NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.) Syllabus for Final Year Electrical Engineering Faculty of Engineering and Technology

Teachers, Paper Setters and Examiners Guidelines Manual SEMESTER – VII and VIII W.E.F 2015 – 2016

North Maharashtra University, Jalgaon Syllabus Structure For Final Year Electrical Engineering w.e.f year 2015-16

Semester -VII

Course	Name of the Course	Group	Teaching	Schomo			Evalua	tion Sch	eme		Total	Credits
Code	Name of the Course	uroup	Teaching Scheme				The	Theory		Practical		
			Theory Hrs /week	Tutorial Hrs /week	Practical Hrs /week	Total	ISE	ESE	ICA	ESE		
	Industrial Drives & Control (TH)	D	3	-	-	3	20	80	_	-	100	3
	High Voltage Engineering(TH)	D	3	_	_	3	20	80	_	_	100	3
	Interdisciplinary Elective (TH)	Е	3	_	_	3	20	80	_	_	100	3
	Elective – I (TH)	Е	3	_	_	3	20	80	_	_	100	3
	Power System Operation And Control(TH)	D	3	-	_	3	20	80	_	-	100	3
	Industrial Drives & Control (LAB)	D	_	_	2	2	_	_	25	25 (PR)	50	1
	High Voltage Engineering (LAB)	D	_	_	2	2	_	_	25	25 (OR)	50	1
	Elective – I (LAB)#	Е	_	_	2	2	_	_	25	25 (PR)	50	1
	Project – I (LAB)	D	_	_	2	2	_	_	25	25 (OR)	50	2
	Seminar – II	D	_	_	2	2	_	_	25	_	25	2
	Industrial Visit	D	_	_	_	_	_	_	25	_	25	1
	Total		15	0	10	25	100	400	150	100	750	23

ISE: Internal Sessional Examination

ESE: End Semester Examination

ICA : Internal Continuous Assessment

	Interdisciplinary Elective		Elective – I
1	Energy Audit & Conservation	1	Industrial Electrical Engineering
2	Renewable Energy Sources	2	Digital Signal Processing
		3	Control System –II
		4	Electric Traction Engineering

Lab for Elective – I (LAB)

Interdisciplinary Elective shall be offered by the department to the students of other departments. Students from one department can not register for Interdisciplinary Elective of the same department.

• At least 15 students should register for offering any elective.

North Maharashtra University, Jalgaon Syllabus Structure For Final Year Electrical Engineering w.e.f year 2015-16

Semester -VIII

Course	Name of the Course	Group	Teaching Scheme			Evalua	tion Sch	ieme		Total	Credits	
Code	Name of the course	Group				Theory		Practical				
			Theory Hrs /week	Tutorial Hrs /week	Practical Hrs /week	Total	ISE	ESE	ICA	ESE		
	Power System Stability (TH)	D	3	_	-	3	20	80	_	_	100	3
	Switchgear & Protection (TH)	D	3	_	-	3	20	80	_	_	100	3
	Elective – II (TH)	Е	3	_	-	3	20	80	_	_	100	3
	Elective – III (TH)	Е	3	_	-	3	20	80	_	_	100	3
	Power System Stability (LAB)	D	_	_	2	2	_	_	25	25 (OR)	50	1
	Switchgear & Protection (LAB)	D	-	-	2	2	-	-	25	25 (PR)	50	1
	Elective – II (LAB)#	Е	_	_	2	2	-	_	25	25 (OR)	50	1
	Industrial Lecture*	С	_	_	1*	1	_	_	50	_	50	2
	Project – II	D	_	_	4	4	_	_	75	75(OR)	150	6
	Total		12	0	11	23	80	320	200	150	750	23

ISE: Internal Sessional Examination

ESE: End Semester Examination

ICA : Internal Continuous Assessment

	Elective-II		Elective – III
1	Computer Aided Power System Analysis	1	Flexible AC Transmission System and Power Quality
2	Industrial Automation	2	Generation Planning and Load Dispatch
3	Advance Microprocessor	3	High Voltage Transmission
4	Power System Design Practice	4	Electromechanical Energy Conversion.

- # Lab for Elective II (LAB)
- * Lectures to be delivered by experts from the industry in alternate weeks. Next week group discussion on the lecture delivered.
- At least 15 students should register for offering any elective.

Industrial Drives and Control

Teachers, Paper setters and Examiners should follow the guidelines as given below. **Unit-I**

Sr. No	UNIT-I: Electric Drives	Lecture	References
		required	
А	Concept, classification, advantages,	01	1-6
В	parts of drives, choice of electric drives,	01	1-6
С	fundamental torque equation,	01	1-6
D	types of practical mechanical loads,	01	1-6
Е	dynamics of electrical drive- stability of an electrical	01	1-6
	drive,		
F	constant, torque drive, constant power drive,	01	1-6
G	selection of a D.C and A.C drive, modes of operation	01	1-6
Н	Selection of Motor Power Rating: Classes of motor duty	01	
Ι	determination of motor rating	01	
Guidel	ines for the examiners and paper setters:		
Questic	ns should not be asked on introductory part of syllabus .		
Numeri	cal may be asked on topics H		

Unit-II

Sr.No.	Unit- II: Converters and control	Lecture	References
		required	
А	Phase controlled converters: Single phase fully	02	1-6
	controlled converter, Single phase half controlled		
	converter.		
В	Three phase fully controlled converter, Three phase half	01	1-6
	controlled converter.		
С	selection of converter circuits, Four quadrant operation	01	1-6
D	Choppers: Classes of choppers	02	1-6
Е	Basic principles of Speed control; closed loop control,	01	1-6
	current & speed sensing		
F	Phase locked loop, closed loop position control.	01	1-6
Guideli	nes for the examiner and paper setter.		•
Questio	ns should not be asked on introductory part of syllabus .		
Numeri	cal may be asked on each topics		

Unit - III

Sr.No.	Unit-III: DC motor drives	Lecture required	References
А	Speed-torque characteristics of DC shunt, PMDC motor	01	1-6
В	Speed-torque characteristics of DC series motor, single phase controlled rectifier fed dc drives	01	1-6

С	three phase controlled rectifier fed dc drives	01	1-6		
D	multi quadrant operation of dc separately excited motor	02	1-6		
	fed from fully controlled rectifier				
Е	chopper controlled dc drives	01	1-6		
F	source current harmonics in choppers, converter ratings	02	1-6		
	and closed loop control.				
Guideli	nes for the examiner and paper setter.				
Questic	Questions should not be asked on introductory part of syllabus				
Numeri	Numerical should be asked on topics c, d and e				

Unit – IV

Sr.No.	Unit – IV: - Inverters and PWM techniques	Lecture	References
		required	
а	Voltage source inverters	01	1-6
b	current source inverters	01	1-6
С	PWM inverters	01	1-6
d	sine-triangle comparison	01	1-6
Е	harmonic elimination, hysteresis current controllers	02	1-6
F	space vector pwm	02	1-6
Guideli	nes for the examiner and paper setter.		
Numer	cal may be asked from topic E		

Unit – V

Sr.No	Unit – V:- AC motor drives	Lecture	References
		required	
А	Speed control of single phase induction motors	01	1-6
В	Speed control of three phase induction motors	01	1-6
С	d-q model of induction motor	01	1-6
D	VSI control, CSI control,	01	1-6
Е	Constant flux speed control structure, vector control model	01	1-6
F	vector control structure.	01	1-6
G	Energy Conservation in Electric Drives: Losses in Electric drive systems, measures of Energy conservation in Electric drives.	01	1-6
Н	Use of efficient converters, energy efficient operation of drives,	01	1-6
Ι	Improvement of p.f., improvement of quality of supply, maintenance of motors	01	1-6
	ines for the examiner and paper setter. ons should not be asked on introductory part of syllabus.		

Reference Books :

- 1. V. Subramanyam , "Thyristerised Control of Electric Drives", Tata McGraw Hill, New Dehli.
- 2. Dubey, Joshi, Sinha, "Thyristor Power Control", Willey Eastern Publication.
- 3. M. Rashid, "Power Electronics Circuit Devices & Applications", Prentice Hall of India.
- 4. G. K. Dubey , "Fundamentals of Electrical Drives", Narosa Publishing House.
- 5. Mohammad A. El-Sarkawi, "Fundamentals of Electrical Drives", vikas Publishing House.
- 6. Ned Mohan, " Electric Machines and Drives", Wiley India Pvt. Ltd.
- 7. <u>http://nptel.iitm.ac.in</u>

High Voltage Engineering

Teachers, Paper setters and Examiners should follow the guidelines as given below.

U	ni	t-I

Sr. No	Unit-I: Breakdown In Gases, Liquids & Solids	Lecture	References
		required	
а	Review and classification of insulating material,	01	1-6
b	Breakdown in gases, Townsend's law.	01	1-6
с	Breakdown in electronegative gases,	01	1-6
d	Streamer mechanism of spark, Paschen's law,	01	1-6
e	Corona discharge, electronegative gases.	01	1-6
f	Breakdown in pure and commercial liquids,	01	1-6
g	Breakdown in solid dielectric and composite dielectric,	01	1-6
h	Breakdown in vacuum .	01	1-6

Questions should not be asked on introductory part of syllabus

Unit-II

Sr. No	Unit-II Lightning and Switching Over Voltage	Lecture	References
	Protection	required	
		-	
а	Lighting strokes to lines and towers	01	1-6
b	Lighting strokes mechanism & characteristics.	01	1-6
с	Over voltage due to switching surge, system fault.	02	1-6
d	Protection of transmission lines from lightning,	01	1-6
е	Lightning arrestors,	01	1-6
f	Insulation co-ordination of HV and EHV power system .	02	1-6
Guidel	ines for the examiners and paper setters:		
Questic	ns should not be asked on introductory part of syllabus		

Unit-III

Sr. No	Unit-III: Generation of High Voltage & Currents	Lecture	References
		required	
а	Generations of high direct current voltage,	01	1-6
b	Generation of high alternating voltage,	01	1-6
С	Generation of Impulse voltage and current ,	01	1-6
d	Generation of lightning surges.	01	1-6
e	Classification of High voltage laboratories,	01	1-6
f	Testing facilities provided in High voltage laboratories,	02	1-6
g	Grounding of impulse testing laboratories.	01	1-6
Guide	ines for the examiners and paper setters:		1
Questic	ons should not be asked on introductory part of syllabus		

Unit-IV

Sr. No	Unit-IV: Measurement Of High Voltage And Currents	Lecture	References
		required	
а	Methods of measurement of peak voltage,	02	1-6
b	Methods of measurement of impulse voltage and high	02	1-6
	direct current,		
С	Non destructive measurement and testing,	02	1-6
d	High voltage dielectric loss and capacitance	01	1-6
	measurements		
e	Ratio frequency & partial discharge measurements.	01	1-6
Guide	ines for the examiners and paper setters:		
Questic	ns should not be asked on introductory part of syllabus		

Unit-V

Sr. No	Unit-V: Testing and EHV Line Insulation	Lecture	References
		required	
а	Basic technology of line insulator	01	1-6
b	Testing of insulators bushing ,	01	1-6
С	Testing of cables , transformer,	02	1-6
d	Testing of surge diverters	01	1-6
e	Threshold current , capacitance of long objects,	01	1-6
F	Electromagnetic interference,	01	1-6
g	E.H.V line insulation design based upon transient over	01	1-6
	voltages.		
Guide	ines for the examiners and paper setters:		
Questic	ons should not be asked on introductory part of syllabus		

Reference Books:-

- 1. M.S. Naidu & V.Kamaraju , "High Voltage Engg", Tata McGraw Hill.
- 2. E.Kuffel and W.S Zaenglo, "High Voltage Engg", PERgamon Press
- 3. ,Rakash Das Begamudre, "Extra High Voltage Transmission", New Age International Publication.
- 4. C.L. Wadhawa , "High Voltage Engineering" Wley Eastern
- 5. R.S.Jha , "High Voltage Engineering"
- 6. <u>http://nptel.iitm.ac.in</u>

Interdisciplinary Elective Energy Audit and Conservation

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	Unit-I: Energy Audit	Lecture required	References
а	Need and concept of energy audit, pre-requisite of energy conservation,	01	1-6
b	Principles of energy audit, type and methodology of energy audit:	02	1-6
С	Preliminary energy audit and detailed energy audit, procedures of carrying out energy audit.	02	1-6
d	Identification of energy conservation opportunities and priority,	01	1-6
e	Energy audit report writing,	01	1-6
f	Instruments used for energy audit.	01	1-6
g	Energy Conservation Act, Progress made in energy conservation in India.	01	1-6

Unit-II

Sr.No.	Unit -II: Economics of Energy Conservation	Lecture required	References
а	Simple payback period analysis,	01	1-6
b	Advantages & limitations of payback period,	01	1-6
С	Time value of money, net present value method,	01	1-6
d	Internal rate of return method, and profitability index	01	1-6
е	Risk and sensitivity analysis;	01	1-6
f	Financing options, Micro factors and macro factor	02	1-6
g	Study and selection of proper tariff for particular application,	01	1-6
h	Fixed & variable components in tariff,	01	1-6
i	Impact of tariff on energy management.	01	1-6
	nes for the examiners and paper setters: on should not be asked from introductory part of syllabus	•	

Unit - III

Sr.No.	Unit-III: Energy Management	Lecture required	References	
--------	-----------------------------	---------------------	------------	--

а	Concept of energy management –	01	1-6
b	Energy inputs in industrial ,residential, commercial, agricultural and public sector	01	1-6
с	Management of power factor, power factor improvement	01	1-6
d	Power demand monitoring. Concept of demand side management (DSM),	02	1-6
e	Scope of DSM, DSM planning and implementation ,	02	1-6
f	Load management as DSM strategy	01	1-6
g	Advantages of DSM to consumers, utility and society.	01	1-6
	nes for the examiners and paper setters:		
Questio	on should not be asked from introductory part of syllabus		

Unit – IV

Sr.No.	Unit-IV: Energy Conservation	Lecture	References
		required	
а	Motive power: potential for saving electrical energy in motors	01	1-6
b	Over sizing or under loading, improving, efficiency of an existing motor,	01	1-6
С	Energy efficient motors, variable or adjustable speed drives for energy conservation , effect of rewinding on performance and consumption.	01	1-6
d	Lighting: level of illumination for different areas.	01	1-6
e	Use of right source of lamp for different applications, energy efficient lamps,	02	1-6
f	Different type of light fixtures	01	1-6
g	Heating & Cooling systems: energy saving in furnace air conditioners and refrigeration.	01	1-6
h	Energy conservation in air conditioners and refrigeration.	01	1-6
	nes for the examiners and paper setters:	<u> </u>	<u> </u>

Question should not be asked from introductory part of syllabus

Unit - V

Sr.No	Unit-V : Scope of Conservation	Lecture	References
		required	
а	Energy conservation in industrial,	02	1-6
b	Energy conservation in agricultural, commercial, domestic and municipal sectors.	02	1-6
С	Energy conservation in generation, Co-generation, Waste heat recovery,	02	1-6
d	Energy conservation in transmission and distribution	02	1-6

Guidelines for the examiners and paper setters:	
Question should not be asked from introductory part of syllabus	

Reference books

- 1. Umesh Rathore, "Energy Management", S K Kataria and Sons.
- 2. S. C. Tripathy, "Electrical Energy Utilization and Conservation", THM Publication
- 3. S.Rao, "Energy Technology"' Khanna Pub.
- 4. Preceding of the Seminar on "Energy Audit & Demand Side Management" held at Govt. College of Engineering, Pune-5 organized by M.S.E.B.(SEA) ON 16.09.1998.
- 5. B.E. Kushare, "Hand Book on Energy Efficient Motors", International Cooper Proposition Council,
- 6. Bureau of Energy Efficiency

Interdisciplinary Elective Renewable Energy Resources

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I: Solar Energy	Lecture	Reference
		required	
a	Introduction to energy technology and energy sciences,	01	1-6
b	Energy and environment	01	1-6
с	laws of conservation of energy. Essential subsystems in a	01	1-6
	solar energy plant,		
d	Phenomena of light and energy, energy from sun,	01	1-6
e	Solar constant, power density for various wavelength of	01	1-6
	sun light,		
f	clarity index, angle of latitude	01	1-6
g	Solar insolation at different geographical locations.	01	1-6
h	Solar thermal collectors and its types.	02	1-6
Guide	lines for the examiners and paper setters:	•	

Unit-II

Sr.No.	UNIT-II: Solar Photovoltaic	Lecture	References
		required	
а	Introduction to solar photovoltaic system,	01	1-6
b	Merit and limitations, economic considerations of solar	01	1-6
	PV system,		
С	Principle and characteristic of solar cell,	01	1-6
d	Efficiency of solar cell ,	02	1-6
e	Configuration of solar PV panel,	01	1-6
f	Solar PV cell technologies	01	1-6
g	Small solar PV system for residence	01	1-6
h	Small solar PV system for rural areas.	01	1-6
Guideli	nes for the examiner and paper setter.	•	-
Questic	ns should not be asked on introductory part of syllabus		

Unit - III

Sr.No.	Unit-III: Geothermal Energy	Lecture required	References
а	Introduction to geothermal energy	01	1-6
b	Geothermal energy resources, origin of geothermal resources	01	1-6
d	Geothermal gradients, hydro geothermal resources,	02	1-6
e	Geo pressure geothermal resources	01	1-6

f	Geothermal fluid fluid for electric power plants	01	1-6			
g	Classification and type of geothermal power plants.	01	1-6			
Guideli	Guidelines for the examiner and paper setter.					
Questio	ns should not be asked on introductory part of syllabus					

Unit – IV

Sr.No.	Unit-IV: Wind Energy	Lecture	References
		required	
а	Introduction to wind energy,	01	1-6
b	Nature of wind energy conversion system	01	1-6
С	Wind power density,	01	1-6
d	Forces on the blades of a propeller,	01	1-6
e	Wind turbine efficiency,	01	1-6
f	Wind velocity duration characteristic ,	01	1-6
g	Type of wind turbine-generator unit ,	01	1-6
h	Planning of wind farm and grid connection.	01	1-6
Guideli	nes for the examiner and paper setter.		
Questic	ons should not be asked on introductory part of syllabus		

Unit - V

Sr.No	Unit-V : Biomass Energy	Lecture	References
		required	
а	Introduction to biomass energy resources,	01	1-6
b	Biomass conversion process,	01	1-6
С	Direct combustion of biomass, gaseous fuels from	01	1-6
	biomass,		
d	Gaseous fuels from biomass,	01	1-6
е	Introduction to urban solid waste -to- energy by	01	1-6
	incineration process,		
f	Waste -to- energy incineration process and energy	01	1-6
	plant,		
g	location of plants, wood and wood waste as primary	02	1-6
	energy source and cogeneration plant.		
Guidel	ines for the examiner and paper setter.		
Questi	ons should not be asked on introductory part of syllabus		

Reference Books

- 1. S Rao & Dr. B B Parulekar, "Energy Technology", Khanna Publishers.
- 2. Dr. H S Mukunda, Understanding Clean Energy and fuels from Biomass", Wiley India
- 3. <u>http://nptel.iitm.ac.in</u>

Elective-I Industrial Electrical Engineering

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I: Electric Drives	Lecture	References
		required	
a	Type of drives, Nature of load,	01	1-6
b	Section motors, electrical, mechanical , service capacity and rating	01	1-6
С	Types of Enclosures.	01	1-6
d	Electrical Characteristic: Operating and running, Starting, speed control and braking characteristics of DC motors.	01	1-6
e	Electrical Characteristic: Starting, Operating and running, speed control and braking characteristics of three phase induction motor and single phase Induction motor.	01	1-6
f	Problems on speed control, torque and braking of DC motors	02	1-6
g	Problems on speed control, torque and braking of DC motors	02	1-6

Unit-II

Sr.No.	UNIT-II: Types of Duties	Lecture	References
		required	
а	Type of duty :Continuous, intermittent and short time	02	1-6
	rating ,		
b	Temperature rise and rating	02	1-6
С	Calculations for these duties mechanical features ,	01	1-6
d	Features of load diagram construction,	01	1-6
e	Load equalization & use of flywheel.	01	1-6
f	Problems on rating and temperature rise	01	1-6
g	Problems on load equalization and flywheel.	01	1-6
Guideli	nes for the examiner and paper setter.		
Questio	ns should not be asked on introductory part of syllabus .		
NT			

Numerical should be asked on each topics

Unit – III

Sr.No.	Unit-III: Traction Systems	Lecture required	References
а	Requirements of ideal traction system,	01	1-6

b	Systems of track electrification and their comparison,	01	1-6	
С	Speed time curve, factors affecting on schedule speed,	01	1-6	
d	Tractive effort, Factors affecting in energy consumption	02	1-6	
е	Specific energy consumption.	01	1-6	
f	Problem on speed time curves and tractive efforts	01	1-6	
g	Problems on energy consumption and specific energy	01	1-6	
	consumption.			
Guideli	nes for the examiner and paper setter.			
Questic	Questions should not be asked on introductory part of syllabus			
Numeri	cal should be asked on topics c, d and e			

Unit – IV

Sr.No.	Unit – IV: Traction Motors	Lecture required	References
а	General features of traction motors,	01	1-6
b	Control of traction motor: starting speed control and braking of DC series motor ,	02	1-6
С	Control of traction motor: Speed control and braking of AC series motor ,	02	1-6
d	Energy returned during regenerative braking	01	1-6
e	Overhead equipment control gear .	01	1-6
f	Calculation energy return in braking	01	1-6
	nes for the examiner and paper setter. cal may be asked from topic b,c and d		

Unit – V

Sr.No	Unit-V: Heat Ventilation and Air Conditioning	Lecture required	References
а	Refrigeration cycle,	01	1-6
b	Type of refrigeration,	01	1-6
С	Air conditioning, type of air conditioning,	01	1-6
d	Heating of building.	01	1-6
e	Methods of electric heating & its advantages,	01	1-6
f	Resistance oven, induction heating	01	1-6
g	Electric welding.	02	1-6
	ines for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

Reference Books:

- 1. J.B.Gupta , "A Course in Electrical Power"
- 2. V.V.L.Rao, "Utilization of Electrical Energy", TMH
- 3. O.E.Taylor , "Utilization of Electrical Energy", TMH
- 4. S.K.Pillai, "A Course in Electrical Energy", TMH

Elective-I Digital Signal Processing

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I: Signal and Fourier Analysis	Lecture	References
		required	
a	Classification of signal, classification of system	01	1-6
b	Fourier Transform:	02	1-6
С	Properties of Fourier Transform,	02	1-6
d	Fourier Transform of some important signals	02	1-6
e	Fourier Transform of power and energy signal.	02	1-6

Questions should not be asked on introductory part of syllabus

Unit-II

Sr. No	UNIT-III: Transform and Linear Time Invariant	Lecture	References	
	System	required		
а	Definition of Z- Transform,	01	1-6	
b	Properties of Z- transform,	01	1-6	
С	Inverse Z- transform	02	1-6	
d	Linear Time Invariant System,	02	1-6	
е	Property of DSP, impulse and frequency response.	02	1-6	
Guidel	ines for the examiners and paper setters:			
Questions should not be asked on introductory part of syllabus				
Numeri	cal treatment on each topic.			

Unit-III

Sr. No	UNIT-IV:Discrete and Fast Fourier Transform	Lecture	References	
		required		
а	Discrete convolution,	01	1-6	
b	Discrete-time Fourier Transform(DTFT),	01	1-6	
С	Fast Fourier Transform (FFT), computing an inverse	02	1-6	
	DFT ,			
d	Short Time Fourier Transform (STFT). (DWT).	02	1-6	
e	Continuous wavelet transforms. Discrete Wavelet	02	1-6	
	Transform			
Guidelines for the examiners and paper setters:				
Questic	ns should not be asked on introductory part of syllabus			
Numeri	cal treatment on each topic.			

Unit-IV

Sr. No	UNIT-V: Finite Impulse Response (FIR) Filter	Lecture	References	
		required		
а	Introduction to Finite Impulse Response Filter,	02	1-6	
b	FIR filter design FIR filter design using different	02	1-6	
	windowing techniques			
с	& frequency sampling method.	02	1-6	
d	Design of linear phase FIR filter	02		
Guide	ines for the examiners and paper setters:			
Questions should not be asked on introductory part of syllabus				
Numeri	ical treatment on each topic.			

Unit-IV

Sr. No	UNIT-V: Finite Impulse Response (FIR) Filter	Lecture	References
		required	
а	Introduction to Infinite Impulse Response Filter,	02	1-6
b	Design Specification of IIR Low pass filter and frequency	02	1-6
	transformation,		
С	Design of IIR filter using Butterworth, Chebyshev	02	1-6
	approximation.		
d	Digital processor,TM320C 2000 Series processor	02	
	2812,28335 and 28027.		
Guide	ines for the examiners and paper setters:		
Questic	ons should not be asked on introductory part of syllabus		
Numeri	ical treatment on each topic.		

References:

- 1. Proakis, Manolakis "Digital Signal Processing: Principles, Algorithms and Applications", PHI.
- 2. Oppenheium, Schaffer ,"Digital Signal Processing", PHI.
- 3. A. Nagoor Kani , "Digital Signal Processing", Tata Mc. Graw Hill.
- 4. Dr. Shaila D Apte ,"Digital Signal Processing",Second Edition , Wiley India Pvt Ltd
- 5. S Salivahanan, A Vallavraj and C Gnanapriya, "Digital Signal Processing" Tata Mc. Graw Hill.
- 6. <u>http://nptel.iitm.ac.in</u>

Elective-I Control System –II

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I: State Space Techniques	Lecture	Reference
		required	
a	Concept of state variable. State model,	01	1-12
b	States variable models of SISO/MIMO linear systems,	02	1-12
	from differential equations, transfer function and block		
	diagrams.		
С	State diagram (Signal flow graphs) Decomposition of	02	1-12
	transfer functions in phase variable forms,		
d	Canonical forms, Jordan canonical form, transfer	02	1-12
	function from the state model, transfer matrix.		
e	Concept of Controllability and observability of linear	02	1-12
	systems. State feedback controller using pole placement,		
	observers.		

Questions should not be asked on introductory part of syllabus

Unit-II

Sr. No	UNIT-II: Sample Data Control System	Lecture	References		
		required			
а	Representation of sample data (Discrete system) review	01	1-12		
	of Z transforms, sample and hold zero order hold.				
b	Sampling theorem Z-transform analysis of sampling data	02	1-12		
	control system. (Open loop and closed loop), Z transfer				
	function of systems.				
С	Solutions of different equation by Z transfer methods.	02	1-12		
d	Pulse transfer functions of open loop and closed loop	02	1-12		
	system with different sample locations.				
e	Stability analysis, relation between S and Z domain,	02	1-12		
	stability by Jury's test and bi-linear transformation and				
	root locus method.				
Guide	Guidelines for the examiners and paper setters:				
Questic	ns should not be asked on introductory part of syllabus				

Unit-III

JIII (-111			
Sr. No	UNIT-III: Non Linear System Analysis-I	Lecture	References
		required	
а	Behavior of non linear system,	01	1-12
b	Various general non linear ties and their characteristics.	01	1-12
С	Stability analysis by describing function method.	02	1-12
d	Existence and stability of limit cycles.	02	1-12
e	Limitation of describing function method.	02	1-12

Guidelines for the examiners and paper setters:

Questions should not be asked on introductory part of syllabus

Unit-IV

Sr. No	UNIT-IV :Non Linear System Analysis-II	Lecture	References	
		required		
а	Liberalization in a small region operating point.	01	1-12	
b	Singular point and their nature.	01	1-12	
С	Phase plane method of analysis of nonlinear system,	02	1-12	
d	Construction of phase trajectories by isoclines method.	02	1-12	
е	Limit cycle behavior	02	1-12	
Guidelines for the examiners and paper setters:				
Questions should not be asked on introductory part of syllabus				

Unit-V

Sr. No	UNIT-V : Stability Analysis By Liapunov Method	Lecture	References
		required	
а	Concept of stability,	01	1-12
b	Asymptotic stability in the large, instability, the sense of	01	1-12
	a Lipunov, Positive of a scale function, quadratic forms.		
С	Second method of Lipnov, stability theorems,	02	1-12
d	Lipunov fuctions stability of linear time invariant	02	1-12
	systems, Lipunov equations.		
e	Krasowakii's method for time examining the stability of	02	1-12
	non-linear time invariant system.		
Guide	ines for the examiners and paper setters:		·
Questic	ons should not be asked on introductory part of syllabus		

Reference Books:

- 1. Nagrath & Gopal, "Control System Engineering", 4th Edition, New age International.
- 2. K. Ogata, "Modern Control Engineering", Prentice Hall of India.
- 3. B.C. Kuo & Farid Golnaraghi, "Automatic Control System" Wiley India Ltd, 2008.
- 4. Norman s Nise, "Control System Engineering" Wiley India Pvt Ltd
- 5. Dr. Rajeev Gupta, "NISE's Control System Engineering" Wiley India Pvt Ltd
- 6. D.Roy Choudhary, "Modern Control Engineering", Prentice Hall of India.
- 7. Ajit K Mandal, "Introduction to Control Engineering" New Age International, 2006.
- 8. R.T. Stefani, B.Shahian, C.J.Savant and G.H. Hostetter, "Design of Feedback Control Systems".
- 9. Narendra Singh Beniwal and Beniwal,"Automatic control system with Matlab Programming "University Science Press.
- 10. Eugene Xavier S.P. and Joseph Cyril Babu, J., "Principles of control systems "S.Chand
- 11. S.Sivangaraju,L.Devi ,"Control Systems Engineering "New Age International Publishers.
- 12. <u>http://nptel.iitm.ac.in</u>

Electric Traction Engineering

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I: Traction Motors	Lecture	References
		required	
a	Performance of (i) d.c. motors	02	1-6
b	Performance of a.c. single phase series motors at low	02	1-6
	frequencies and at commercial frequency		
с	Performance poly phase induction motors, under	02	1-6
	traction service conditions, specific problems and		
	method of overcoming them,		
d	Special features of construction effect of differences in	01	1-6
	driving wheel diameters		
e	Speed time curves on division of load, traction motor	01	1-6
	ratings, speed factor,		
f	Track and overhead equipments.	01	1-6
Guide	ines for the examiners and paper setters:		
Questic	ons should not be asked on introductory part of syllabus , nu	merical on a	to c based
on spee	ed control, torque and braking.		

Unit-II

Sr.No.	UNIT-II: Train Movement and Performance	Lecture	References
		required	
а	Speed time curve	01	1-6
b	Speed time curve its analysis and construction,	01	1-6
С	Schedule speed and factors affecting it	01	1-6
d	Train resistance and its components.	02	1-6
e	Tractive effort calculations,	01	1-6
f	Average acceleration and speed,	01	1-6
g	Energy output and consumption.	02	1-6
Guideli	nes for the examiners and paper setters:	•	-

Questions should not be asked on introductory part of syllabus , numerical on each topic.

Unit – III

Sr.No.	Unit-III: Power Transmission and Weight	Lecture	References			
	Transference	required				
а	Methods of transmission of power from motor to wheels	02	1-6			
b	Idea about riding quantities of an electric loco motive,	02	1-6			
С	Grouping of motor and weight transference,	02	1-6			
d	Adhesive weight factors affecting slip.	02	1-6			
Guideli	Guidelines for the examiner and paper setter.					
Questio	Questions should not be asked on introductory part of syllabus					

Sr.No.	Unit-IV: Power Supply for Traction	Lecture required	References
а	Overhead and conductor rail system, third rail construction	01	1-6
b	Bonding of conductor and track rails, overhead construction for trolley,	01	1-6
С	Buses and railways, quaternary's construction,	01	1-6
d	Temperature effects, current collectors, out times of feeding	01	1-6
е	Distributing system for d.c low frequency, a.c and commercial frequency,	01	1-6
f	AC traction voltage drop control,	01	1-6
g	Electrolytic and inductive coordination,	01	1-6
h	Power loading curves, Positions of substations and load - sharing.	01	1-6
	nes for the examiner and paper setter. ons should not be asked on introductory part of syllabus	-	

Unit – IV

Unit – V

Sr.No	Unit-V : Braking On Electrified Railways	Lecture	References
		required	
а	Mechanical versus electric breaking,	01	1-6
b	Rheostatic braking, Regenerative braking, method and	01	1-6
	energy saved in the process, Magnetic track brakes.		
С	Traction control: Duty cycle, Methods of traction motor	01	1-6
	control,		
d	Series-Parallel and other types of controllers, use of	01	1-6
	interlocks,		
е	Run back prevented, multiple unit control,	01	1-6
f	Master controllers, Reverses,	01	1-6
g	Dead man's handle, use of Metadyne and Megavolt.	02	1-6
Guidel	ines for the examiner and paper setter.		
Questi	ons should not be asked on introductory part of syllabus		

Reference Books:

- 1. J.B.Gupta , "A Course in Electrical Power"
- 2. V.V.L.Rao, "Utilization of Electrical Energy", TMH
- 3. O.E.Taylor, "Utilization of Electrical Energy", TMH
- 4. S.K.Pillai, "A Course in Electrical Energy", TMH
- 5. H. Partab, "Art & Science of Utilization of Electrical Energy"
- 6. <u>http://nptel.iitm.ac.in</u>

Power System Operation and Control

bIncremental fuel rate and cost, Incremental production cost, ,01cOptimum scheduling of generation between different units. (Neglecting transmission losses),01dTransmission loss as a function of plant generation (A simple system connection two generating plants to load) and incremental transmission loss for optimum economy,01eCalculation of loss coefficients (Two plants system), plants considering transmission loss concept and01	References	Lecture	Vo UNIT-I: Economic Load Dispatch & Optimal	Sr. No
bIncremental fuel rate and cost, Incremental production cost, ,01cOptimum scheduling of generation between different units. (Neglecting transmission losses),01dTransmission loss as a function of plant generation (A simple system connection two generating plants to load) and incremental transmission loss for optimum economy,02eCalculation of loss coefficients (Two plants system), plants considering transmission loss concept and01		required	Operation of Power System	
cost, ,Image: Cost, ,cOptimum scheduling of generation between different units. (Neglecting transmission losses),01dTransmission loss as a function of plant generation (A simple system connection two generating plants to load) and incremental transmission loss for optimum economy,02eCalculation of loss coefficients (Two plants system), plants considering transmission loss concept and01	1-2	01	Input Output characteristics, Heat-rate characteristics,	a
cOptimum scheduling of generation between different units. (Neglecting transmission losses),01dTransmission loss as a function of plant generation (A simple system connection two generating plants to load) and incremental transmission loss for optimum economy,02eCalculation of loss coefficients (Two plants system), plants considering transmission loss concept and01	1-2	01	Incremental fuel rate and cost, Incremental production	b
units. (Neglecting transmission losses),0dTransmission loss as a function of plant generation (A simple system connection two generating plants to load) and incremental transmission loss for optimum economy,02eCalculation of loss coefficients (Two plants system), plants considering transmission loss concept and01			cost, ,	
dTransmission loss as a function of plant generation (A simple system connection two generating plants to load) and incremental transmission loss for optimum economy,02eCalculation of loss coefficients (Two plants system), plants considering transmission loss concept and01	1-2	01	Optimum scheduling of generation between different	С
simple system connection two generating plants to load) and incremental transmission loss for optimum economy,eCalculation of loss coefficients (Two plants system),01fOptimum scheduling of generation between different plants considering transmission loss concept and02			units. (Neglecting transmission losses),	
and incremental transmission loss for optimum economy,other economy,eCalculation of loss coefficients (Two plants system), Optimum scheduling of generation between different plants considering transmission loss concept and02	1-2	02	Transmission loss as a function of plant generation (A	d
economy,01eCalculation of loss coefficients (Two plants system),01fOptimum scheduling of generation between different plants considering transmission loss concept and02			simple system connection two generating plants to load)	
eCalculation of loss coefficients (Two plants system),01fOptimum scheduling of generation between different plants considering transmission loss concept and02			and incremental transmission loss for optimum	
fOptimum scheduling of generation between different plants considering transmission loss concept and02			economy,	
plants considering transmission loss concept and	1-2	01	Calculation of loss coefficients (Two plants system),	e
	1-2	02	Optimum scheduling of generation between different	f
			plants considering transmission loss concept and	
significance of penalty factor,			significance of penalty factor,	
g Automatic load dispatch, function and applications 01	1-2	01	Automatic load dispatch, function and applications	g

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Unit-II

Sr.No.	UNIT-II: Generator Voltage Control	Lecture	References
		required	
а	Automatic voltage control,	01	1-7
b	Generator controllers,	01	1-7
с	Cross coupling between P-f and Q-V control channel,	01	1-7
d	Automatic voltage regulator,	02	1-7
e	Types of exciters and excitation systems,	01	1-7
f	Exciter modeling, transfer function modeling for control	01	1-7
g	Static performance of AVR loops.	01	1-7
h	Dynamic response and performance of AVR loops.	01	1-7
Guideli	nes for the examiner and paper setter.		
	Question should not be asked from introductory part of syl	labus.	

Unit - III

Sr.No.	Unit-III: Load Frequency Control	Lecture	References
		required	
а	Automatic load frequency Control,	01	1-7
b	Speed governing system	01	1-7
С	Speed governing system and hydraulic valve actuator for	01	1-7

	individual generator,		
d	Turbine modeling,	02	1-7
e	Generator and load modeling transfer function	02	1-7
f	Representation of power control mechanism of	01	1-7
	generator.		
g	Problems on governor action and calculation of	01	1-7
	frequency.		
Guidelines for the examiner and paper setter.			
Questio	Questions should not be asked on introductory part of syllabus.		

Unit – IV

Sr.No.	Unit-IV: Electric Power Control	Lecture	References		
		required			
а	Concept of control area,	01	1-6		
b	Division of power system into control areas,	01	1-6		
С	Load frequency of single areas	01	1-6		
d	Load frequency two area and multi area (control)	01	1-6		
e	Power system with and without integral controls.	02	1-6		
f	Advantage of pool operation,	01	1-6		
g	Tie line bias control area exchange.	01	1-6		
Guidelines for the examiner and paper setter.					
Questic	Questions should not be asked on introductory part of syllabus.				

Unit - V

Sr.No	Unit-V : Voltage Stability and Compensation	Lecture	References
		required	
а	Power system security, Operating stage (State transition diagram),	01	1-6
b	Voltage stability, Comparison of angle and voltage stability,	01	1-6
С	Reactive power flow and voltage collapse,	01	1-6
d	Voltage stability analysis and prevention of voltage collapse.	01	1-6
e	Compensation in power system:	01	1-6
f	Load compensation, load ability of compensated and uncompensated over head transmission line,	01	1-6
g	compensation of transmission line (Shunt& Series). Introduction of FACTS	02	1-6
	ines for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

Reference:

- 1. Olle L. Elgerd, "Electrical Energy System Theory & Introduction ', TMH.
- 2. I. J. Nagrath & D. P. Kothari, "Modern Power system Analysis", TMH.
- 3. Willium D. Stevenson Jr., "Elements of Power System Analysis", TMH.
- 4. Dr. K Uma Rao, " Power System Operation & Control", Wiley India Pvt Ltd.
- 5. Dr. C.S. Indulkar, "Electric Power Control"
- 6. L.K. Kirchmayer, "Economic Control of Power System"
- 7. C L Wadhwa, "Electrical Power System Analysis", New Age International Publication.
- 8. <u>http://nptel.iitm.ac.in</u>

Industrial Drive and Control (Lab Course Contents)

S.N.	Lab Experiment	Hours
5.11.		required
1	Determination of Speed Torque characteristic of d.c motor controlled	02
	using single phase half controlled rectifier.	
2	Determination of Speed Torque characteristic of d.c motor controlled	02
2	using single phase fully controlled rectifier.	
3	Performance analysis of one quadrant chopper control of d.c motor.	02
4	Performance analysis of one quadrant chopper control of d.c motor.	02
5	Speed control of single phase induction motor using ac voltage	02
5	regulator.	
6	Study of stepper motor drive circuit.	02
7	Speed control of universal motor.	02
8	Study of Micro-computer based control of Dc drives,	02
9	Study of vector control method for induction motor.	02
10	Study of reversible drive.	02

Teacher should facilitate learning following lab experiments:

Note: Lab file should consist of minimum Eight experiments.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

High Voltage Engineering Lab

Sr. No		Lecture
		required
1	Measurement of insulation resistance of 11KV/110 V.P.T by Megger.	02
2	Power frequency withstand test on 11KV, 10/5 amp CT.	02
3	Study of corona discharge.	02
4	Determination of insulating break-down strength of solid, liquid and gaseous dielectric media.	02
5	Power frequency high voltage withstand test on cable.	02
6	Study of impulse generator.	02
7	Dry & Wet power frequency withstand test for insulator.	02
8	Flash over test on insulator.	02
9	Double voltage double frequency withstand test on transformer.	02
10	Calibration of sphere gap.	02
11	Study of 100KV high voltage testing set.	02

Teacher should facilitate learning following lab experiments:

Note: Lab file should consist of minimum **Eight** experiments.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked questions on practical. Evaluation will be based on answers given by students in oral examination.

Elective-I Industrial Electrical Engineering (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours
5.11.		required
1	Performance characteristics of DC Series motor by load test.	02
2	Performance characteristics of DC Series motor by Field Test.	
3	Performance characteristics of DC Shunt motor by direct load test.	02
4	Performance characteristics of single phase induction motor by direct load test.	02
5	Performance characteristics of three phase induction motor by direct load test.	02
6	Speed control of DC series motor.	02
7	Speed control of three-phase slip ring induction motor by rotor resistance method.	02
8	Rheostatic braking of DC shunt motor.	02
9	Study of Air conditioning system.	02
10	Study of induction heating &Welding.	02
11	Study of different types of enclosures	02

Note: (*Objectives and conclusion should be oriented on the basis of characteristic of load, selection, and application of motors.*)

Note: Lab file should consist of minimum Eight experiments.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

Elective-I Digital Signal Processing Lab (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours
5.11.	Lab Experiment	required
1	Shifting and folding of digital signal.	02
2	Linear convolution.	02
3	Discrete Fourier transforms.	02
4	Fast Fourier transforms.	02
5	Design and implement FIR filter using windowing method.	02
6	Design and implement IIR filter using Butterwoth approximation.	02
7	Design and implement IIR filter using Chebeshev approximation.	02
8	Sine/square wave generation using TMS320C67XX.	02
9	FIR filter implementation using TMS320C67XX.	02
10	IIR filter implementation using TMS32OC67XX.	02
11	Filtering Using Discrete Wavelet transforms.	02

Note: Lab file should consist of minimum Eight experiments.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

Elective-I Control System-II (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours
5.11.		required
1	To Study of different MATLAB tools for Control System.	02
2	Find the Response of the Discrete Time Control System for any two standard inputs.	02
3	Simulation on State Transition Matrix.	02
4	State Space Analysis using MATLAB.	02
5	Pole-Zero plot using MATLAB.	02
6	To check the controllability and Observability for the given system.	02
7	Design of control system using pole placement technique.	02
8	Simulation on multivariable control system.	02
9	Design of State observer.	02
10	Design of Discrete Time Control System based on minimization of quadratic performance index.	02
11	To determine time domain response of a second order system for step input and obtain performance parameters by using MATLAB.	
12	To convert transfer function of a system into state space form and vice- versa, by using MATLAB.	02

Note: Lab file should consist of minimum **Eight** experiments.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

Elective-I Electric Traction Engineering (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	
3.IN.		
1	Performance characteristics of DC Series motor by load test.	02
2	Performance characteristics of DC Series motor by Field Test.	02
3	Performance characteristics of DC Shunt motor by direct load test.	02
4	Performance characteristics of single phase induction motor by direct	02
	load test.	
5	Performance characteristics of three phase induction motor by direct	02
5	load test.	
6	Speed control of DC series motor.	02
7	Speed control of three-phase slip ring induction motor by rotor	02
7	resistance method.	
8	Rheostatic braking of DC shunt motor.	02
9	Study of traction transformer.	02
10	Study of Metadyne for electric locomotive.	02
11	Study of electric traction substation.	02

Note: (*Objectives and conclusion should be oriented on the basis of characteristic of load, selection, and application of motors.*)

Note: Lab file should consist of minimum **Eight** experiments.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

	(Lab Course Contents)			
1	It is expected that the broad area of Project-I shall be finalized by the student in the			
	beginning of the VII semester / extension of Minor project undertaken may be Project-I.			
2	A group of Minimum 3 and Maximum 5 students shall be allotted for Project-I and same			
	project group for Project-II.			
3	Exhaustive survey of literature based on a clear definition of the scope and focus of the			
	topic should be carried out by the students. The Synopsis/Abstract on the selected			
	topic, after detail literature survey should be submitted to the Project coordinator			
	appointed by Head of the department.			
4	Project-I may involve literature survey, problem identification, work methodology			
	preparing specification and material procurement, collection of data, conduction of			
	experiments and analysis. The project work shall involve sufficient work so that			
	students get acquainted with different aspects of fabrication, design or analysis.			
5	Approximately more than 50% work should be completed by the end of VII semester.			
	Each student group is required to maintain log book for documenting various activities			
	of Project-I and submit group project report in the form of thermal bound at the end of			
	semester –VII. Submit the progress report in following format:			
	a. Title			
	b. Abstract			
	c. Introduction			
	d. Problem identification and project objectives			
	e. Literature survey			
	f. Case study/Analysis/Design Methodology			
	g. Work to be completed (Progress status)			
	h. Expected result and conclusion			
	i. References.			
	Evaluation Committee comprising of the Guide, Project Coordinator and Expert			
	appointed by the Head of the department will award the marks based on the work			
	completed by the end of semester and the presentation based on the project work.			

Project-I (Lab Course Contents)

Guide lines for ICA : The Internal Continuous Assessment shall be based on the active participation of the students in the Project work and knowledge / skill acquired. Assessment of the project-I for award of ICA marks shall be done jointly by the guide and departmental committee as per the guidelines given in **Table-A**.

Guide lines for ESE: The End Semester Examination for Project shall consist of demonstration if any, presentation and oral examinations based on the project report.

Assessment of Project-I

	Table-A							
SN	Name of Student	Problem Identification and project objectives	Literature Survey	Project Methodology/ Design/PCB/ hardware/ simulation/ programming	Progress Status	Present ation	Total	
		5	5	5	5	5	25	

	Seminar-I				
1	Each Student shall select a topic for seminar which is not covered in curriculum.				
	Seminar topic should not be repeated and registration of the same shall be done on				
	first come first serve basis.				
2	Topic of Seminar shall be registered within a three weeks from commencement of				
	VII Semester and shall be approved by the committee.				
3	The three-member committee appointed by Head of the department shall be				
	constituted for finalizing the topics of Seminar-II. Seminar shall be related state of the				
	art topic of his choice approved by the committee.				
	a.				
4	Each student should deliver a seminar in scheduled period (Specified in time table or				
	time framed by department) and submit the seminar report (paper bound				
	copy/Thermal bound)in following format:				
	b. Title				
	c. Abstract				
	d. Introduction				
	e. Literature survey				
	f. Concept g. Functional and Technical Details				
	h. Applications				
	i. Comparison with similar topics / methods				
	j. Future scope				
	k. References				

ASSESSMENT OF SEMINAR-II

Guide lines for ICA: ICA shall be based on topic selection , presentation and Seminar-II report submitted by the student in the form of thermal bound. Assessment of the Seminar-II for award of ICA marks shall be done jointly by the guide and a departmental committee, as per the guidelines given in **Table- B**

Name of Guide: _____

	Table-B							
SN	Name of Student	Seminar Topic	Topic Selection	Literature survey	Report writing	Depth of under- standing	Presentation	Total
			5	5	5	5	5	25

1	Industry visits for minimum two industries shall be carried out by each student				
	preferably or college shall arrange the industrial visit during the vacation period				
	otherwise during the regular VII semester.				
2	The student should obtain appropriate certificates of visit from the concerned				
	organizations just after the visits.				
3	Every Student should submit Industrial Visit report individually at the end of				
	Semester-VII(First Term of Final Year)				
4	The report(Thermal Bound) should contain information about the following points:				
	a. The organization - activities of organization and administrative setup				
	technical personnel and their main duties.				
	b. The project / industry brief description with sketches and salient technical				
	information.				
	c. The work / processes observed with specification of materials, products,				
	equipments etc. and role of engineers in that organization.				
	d. Suggestions (if any) for improvement in the working of those organizations.				
	The evaluation of the report of technical visits will be made by panel of three teachers				
	appointed by Head of the department based on following points:				

Industrial Visit

Guide lines for ICA : ICA shall be based on knowledge gain by student and Industrial Visit Report submitted by the student in the form of Thermal bound. Assessment of the Industrial Visit for award of ICA marks shall be done jointly by industrial visit coordinators departmental committee based on viva -voce as per the guidelines given in **Table- C**

SN	Name of Student	Name of Industry	Report writing	Depth of Under-	Total			
				standing				
			15	10	25			

Table-C

NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.) Syllabus for Final Year Electrical Engineering Faculty of Engineering and Technology

Teachers, Paper Setters and Examiners Guidelines Manual SEMESTER –VIII W.E.F 2015 – 2016

Power System Stability

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I: Concept of Stability	Lecture	References
		required	
а	Meaning and concept of stability,rotor, voltage and frequency stability.	01	1-6
b	Definition and description steady state transient & dynamic stability limits	01	1-6
С	Park's transformation equations,	01	1-6
d	Analysis of transient and subtransient state operation of salient synchronous machine.	01	1-6
e	Analysis of transient and subtransient state operation of non salient pole machines,	01	1-6
f	Phasor diagrams, voltage behind the transient and subtransient impedances,	01	1-6
g	Determination of parameters of Synchronous machine	01	1-6
h	Determination of parameters of Synchronous machine and time constant	02	1-6
Guide	lines for the examiners and paper setters:		

Unit-II

Sr.No.	UNIT-II: Steady State Stability	Lecture	References			
		required				
а	Concept of steady state stability limit.	01	1-6			
b	Determination SSSL of short transmission lines,	01	1-6			
с	Determination SSSL by Analytical methods	01	1-6			
d	Determination SSSL by graphical methods(with and	02	1-6			
	without losses)					
e	Effect of inertia on steady state stability	01	1-6			
f	Conservative criterion for steady state stability	01	1-6			
g	Synchronizing co-efficient	01	1-6			
h	Multi machine system.	01	1-6			
Guideli	Guidelines for the examiner and paper setter.					
	Numerical may be asked on Sr. No. c and d					

Unit - III

Sr.No.	Unit-III: Factors Affecting Steady State Stability	Lecture required	References
а	Effect of saturation	01	1-6
b	Saturated reactance	01	1-6
С	Equivalent reactance,	01	1-6
d	Graphical method to find equivalent	02	1-6

е	Effect of short circuit ration on stability and cost	01	1-6		
f	Effect of governor action,	01	1-6		
g	Effect of automatic voltage regulator.	01	1-6		
Guideli	Guidelines for the examiner and paper setter.				

Questions should not be asked on introductory part of syllabus

Unit – IV

Sr.No.	Unit-IV: Transient State Stability	Lecture	References		
		required			
а	Review of basic concept, TTS	01	1-6		
b	Equal area criterion	01	1-6		
С	Equal area criterion for different disturbances	01	1-6		
d	Assumption made for swing equation , swing equation,	01	1-6		
e	Short coming of classical models.	01	1-6		
f	Point by point solution of transient stability ,	01	1-6		
g	Critical cleaning angle and critical clearing time.	01	1-6		
h	Problems on equal area criteria.	01	1-6		
Guideli	Guidelines for the examiner and paper setter.				
Numer	Numerical from equal area criteria				

Unit - V

Sr.No	Unit-V : Factors Affecting Transient State Stability	Lecture	References
		required	
а	Effects of types of fault,	01	1-6
b	Effect of grounding,	01	1-6
С	Effect of high speed reclosing	01	1-6
d	Precalculated swing curves and their use,	01	1-6
е	Effects of fault clearing time,	01	1-6
f	Effects of excitation and governing action,	01	1-6
g	Methods of improving stability, multi-machine problem .	02	1-6
	Guidelines for the examiner and paper setter. Questions should not be asked on introductory part of syllabus		

- 1. Aderson and Ford, "Power System Operation and Control", IEEE
- 2. E.W. Kimbark , "Power Systems Stability", Vol- I & II , Wiley India Pvt Ltd
- 3. S. B.Cray, "Power System Stability", John Wiley
- 4. Nagrath & Kothari , " Modern Power System Analysi", TMH
- 5. P. S Bimbhra, "Generalized Electrical Machinery", Khanna Publishers
- 6. Peter W. Sauer and M A Pai, "Power System Dynamics and Stability", Pearson Education.
- 7. <u>http://nptel.iitm.ac.in</u>

Switchgear and Protection

Teachers, Paper setters and Examiners should follow the guidelines as given below.

aBasic requirement of Switching and protection ,011-7bArc phenomenon, maintenance of arc011-7cProperties of arc, interruption theories011-7dTransient recovery Voltage,011-7eTransient analysis,011-7fRRRV,011-7gInterruption of capacitive current011-7hInterruption of current chopping,021-7	Sr. No	UNIT-I: Arc Phenomena and Interruption	Lecture required	References
cProperties of arc, interruption theories011-7dTransient recovery Voltage,011-7eTransient analysis,011-7fRRRV,011-7gInterruption of capacitive current011-7	a	Basic requirement of Switching and protection ,	01	1-7
dTransient recovery Voltage,011-7eTransient analysis,011-7fRRRV,011-7gInterruption of capacitive current011-7	b	Arc phenomenon, maintenance of arc	01	1-7
eTransient analysis,011-7fRRRV,011-7gInterruption of capacitive current011-7	С	Properties of arc, interruption theories	01	1-7
fRRRV,011-7gInterruption of capacitive current011-7	d	Transient recovery Voltage,	01	1-7
g Interruption of capacitive current 01 1-7	e	Transient analysis,	01	1-7
	f	RRRV,	01	1-7
h Interruption of current chopping, 02 1-7	g	Interruption of capacitive current	01	1-7
	h	Interruption of current chopping,	02	1-7
	Questic	ons should not be asked on introductory part of syllabus		

Unit-II

Sr.No.	UNIT-II: Circuit Breakers and Fuses	Lecture required	References		
а	Construction & Operation , class , breaking capacity, of CB	01	1-9		
b	Construction & Operation Bulk oil circuit breaker.	01	1-9		
С	Construction & Operation Minimum oil circuit breaker.	01	1-9		
d	Construction & Operation , air blast circuit breaker, SF6 .	02	1-9		
е	Construction & Operation SF6 CB	01	1-9		
f	Construction & Operation Vacuum Circuit Breaker ,	01	1-9		
g	Construction & Operation Earth leakage & Miniature circuit breaker	01	1-9		
h	Construction & Operation HRC fuses	01	1-9		
	Guidelines for the examiner and paper setter. Questions should not be asked on introductory part of syllabus				

Sr.No.	Unit-III: Protective Relay-I	Lecture	References
		required	
а	Protection system and its attributes: sensitivity,	01	1-9
	selectivity, speed, reliability and dependability,		
b	Trip circuit, organization of protection, zones of	01	1-9
	protection and maloperation.		
С	Construction ,working and characteristic features of	01	1-9

	electromagnetic relay: Over current,				
d	Instantaneous over-current relay	02	1-9		
е	Definite time over-current, inverse time over-current	02	1-9		
	relay				
f	Directional over current relay and Differential relay.	01	1-9		
Guide	Guidelines for the examiner and paper setter.				
Quest	Questions should not be asked on introductory part of syllabus				

Sr.No.	Unit-IV: Protective Relay-II	Lecture	References
		required	
а	Construction ,working and characteristic features of	01	1-9
	electromagnetic relay: Impedance relay , its trip law		
	using universal torque equation.		
b	Reactance relay its trip law using universal torque equation.	01	1-9
С	Mho relay , its trip law using universal torque equation.	01	1-9
d	Static Over current relay: Single and double actuating	01	1-9
	quantity relay,		
e	Basic principle of static over current relay and	02	1-9
	directional over current relay.		
f	Evolution Digital protection: basic component of digital	01	1-9
	relay, Digital sub units digital relay as unit.		
g	Microprocessor based relay, block diagram, relay for	01	1-9
	motor and advantages.		
Guideli	nes for the examiner and paper setter.		
Questio	ns should not be asked on introductory part of syllabus		
it - V			

Sr.No	Unit-V : Protection Scheme	Lecture	References
		required	
а	Different type of protective scheme: Over current protection.	01	1-9
b	Differential protection,	01	1-9
С	Earth fault protection ,	01	1-9
d	Distance protection and carrier –aided protection.	01	1-9
e	Protective scheme for generator,	01	1-9
f	Protective scheme for transformer and busbar	02	1-9
g	Protective scheme for transmission line and motor.	01	1-9
	ines for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

- 1. Y G Paithankar and S R Bhide, "Fundamentals of Power System Protection" PHI
- 2. T.S. Madharao , "Power System Protection (Static Relay)", Tata MacGraw Hill.
- 3. C.R.Mason , "The Art and Science of Protective Relaying"
- 4. B.Ram &Vishwakarma D.N , "Power System Protection & Switch Gear", TMH
- 5. Sunil S.Rao , "Switchgear & Protection", Khurana Pun
- 6. B.Ravindranath & M. Chandar, "Power System Protection & Switch Gear", New age International.
- 7. A.G. Phadke & Thorpe, "Power System Protection their Theory & Practice ", Chapman & Hall.
- 8. E. W Kimbark, "Power Systems Stability" Vol-II, Wiley India Pvt. Ltd.
- 9. http://nptel.iitm.ac.in

Elective-II Computer Aided Power System Analysis

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	Unit-I: Network Topology	Lecture	Reference
		required	
a	Concept and need of modeling: Modeling of Power	01	1-6
	System Components, Basic Concepts,		
b	Modeling of Power System Components Single Phase,	01	1-6
С	Three Phase Models, Matrix,	01	1-6
d	Representation of Networks Topology of Electric power	01	1-6
	system		
e	Network Graphs, Incidence matrices,	01	1-6
f	Fundamental loop and cutest matrix,	01	1-6
g	Primitive impedance and admittance matrix,	01	1-6
h	Singular transformation of network matrix.	02	1-6
Guide	lines for the examiners and paper setters:		<u>.</u>

Unit-II

Sr.No.	Unit-II: Incidence Matrix	Lecture	References
		required	
a	Formation of bus impedance and admittance matrices by algorithm	01	1-6
b	Formation of bus impedance and admittance matrices by algorithm	01	1-6
С	Modification of bus impedance and admittance matrix to account for change in networks.	01	1-6
d	Modification of bus impedance and admittance matrix to account for change in networks.	02	1-6
e	Derivation of loop impedance matrix.	01	1-6
f	Algorithm for formulation of 3- phase bus impedance matrix.	01	1-6
g	Problem on above topics	01	1-6
h	Problem on above topics	01	1-6
	nes for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

Unit - III

Sr.No.	Unit-III: Short Circuit Studies	Lecture	References
		required	
а	Need of short circuit studies: Short circuit study of three	01	1-6
	phase network,		
b	Symmetrical components.	01	1-6
С	Thevenin's theorem and short circuit analysis of	02	1-6
	multimode power system using bus impedance matrix.		
d	Short circuit calculations for balanced short circuit bus	02	1-6
	impedance and loop impedance matrices.		
e	Short circuit calculations for unbalanced short circuit	02	1-6
	bus impedance and loop impedance matrices.		
f	Problem on above topics	01	1-6
Guideli	nes for the examiner and paper setter.		
• • •			

Questions should not be asked on introductory part of syllabus

Unit – IV

Basic concept of load flow studies and need Slack bus, loop buses,	required 01 01	1-6 1-6
Slack bus, loop buses,		
	01	1-6
Voltage control busca Load flow counting		
Voltage control buses, Load flow equations,	01	1-6
Power flow model using bus admittance matrix,	01	1-6
Power flow solution through Gauss-Seidal and N-R methods sensitivity analysis,	02	1-6
Second order N-R method, fast decoupled load flow method,	01	1-6
Sparsity of matrix.	01	1-6
	Power flow solution through Gauss-Seidal and N-R methods sensitivity analysis, Second order N-R method, fast decoupled load flow method,	Power flow solution through Gauss-Seidal and N-R02methods sensitivity analysis,01Second order N-R method, fast decoupled load flow01method,01Sparsity of matrix.01

Questions should not be asked on introductory part of syllabus

Unit - V

Sr.No	Unit-V : Fault Analysis	Lecture	References
		required	
а	Need of fault analysis in power system	01	1-6
b	Simultaneous of faults,	01	1-6
С	Simultaneous Faults by two port network	01	1-6
d	Theory (Z, Y and H-type Faults),	01	1-6
e	Simultaneous faults by matrix Transformations,	02	1-6
f	Analytical simplifications of series and shunt fault.	02	1-6
	ines for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

- 1. J. J. Gringer, W.D. Stevenson, "Power System Analysis", McGraw Hill. 1994
- 2. G.W.Stagg and Al Ebiad,"Computer Methods in Power System Analysis", Mc Graw Hill,
- 3. I.J.Nagrath and D.P.Kothari, "Modern Power System Analysis", Tata McGraw Hill, 1980.
- 4. G.L.Kusic, "Computer Aided Power System Analysis", Prentice Hall, 1986.
- 5. Hadi Sadat, "Power System Analysis", Tata McGraw Hill.
- 6. <u>http://nptel.iitm.ac.in</u>

Elective-II Industrial Automation

Teachers, Paper setters and Examiners should follow the guidelines as given below.

TT	T
	n1 T -1
U.	1111-1

Sr. No	Unit-I: Introduction to Industrial Automation,	Lecture	References
	basics of PLC and Automation strategy.	required	
а	Introduction to Industrial Automation,	01	1-6
b	Role of automation industry,	01	1-6
С	Programmable Logic Controller,	01	1-6
d	Basic operation, PLC architecture and components,	01	1-6
e	Programming language,	01	1-6
f	PLC application and Manufacturers,	01	1-6
g	Introduction to Automation tools like PLC,	01	1-6
h	Introduction to SCADA, DCS, Hybrid DCS etc.	02	1-6
Guidel	ines for the examiners and paper setters:		
Questic	ns should not be asked on introductory part of syllabus		

Unit-II

Sr.No.	Unit-II: Basics PLC Functions and configuration.	Lecture	References
		required	
а	PLC registers,	01	1-6
b	PLC modules,	01	1-6
С	Addressing System,	01	1-6
d	Field Input/ Output system,	02	1-6
e	PLC timers functions,	01	1-6
f	PLC counters,	01	1-6
g	Industrial process Timing application,	01	1-6
h	Selection of PLC and I/O modules	01	1-6
	nes for the examiner and paper setter.	•	•

Questions should not be asked on introductory part of syllabus

Sr.No.	Unit-III: Instructions , Data handling functions.	Lecture	References	
		required		
а	PLC logical instruction,	01	1-6	
b	PLC arithmetic instruction,	01	1-6	
С	PLC repetitive clock functions,	02	1-6	
d	PLC numbering systems, conversion function,	02	1-6	
е	PLC master relay control function, Jump , Data Move instructions and other data handling functions,	02	1-6	
f	Scaling instructions.	01	1-6	
Guidelines for the examiner and paper setter.				
Questic	ns should not be asked on introductory part of syllabus			

Sr.No.	Unit-IV: Programming of PLC	Lecture	References		
		required			
а	Introduction Ladder/ FBD language,	01	1-6		
b	PLC configuration with I/O designations,	01	1-6		
С	Addressing system in programming,	01	1-6		
d	Process to develop ladder language in software,	01	1-6		
e	Uploading/ Downloading the program to/ from PLC,	02	1-6		
f	To develop ladder for ON/OFF controlling of motor,	01	1-6		
g	Traffic signal light, etc.	01	1-6		
Guideli	Guidelines for the examiner and paper setter.				
Questic	ons should not be asked on introductory part of syllabus				

Unit - V

Sr.No	Unit-V :Fault AnalysisApplicationofPLC/Industrial application and Introductionto	Lecture required	References
	SCADA system.		
а	Application development and automation for following industries:-	01	1-6
	Power		
b	Pharmaceuticals	02	1-6
С	Automobile	02	1-6
d	Rubber industry etc.	02	1-6
e	Introduction to SCADA system	01	1-6
Guidel	ines for the examiner and paper setter.		
Questi	ons should not be asked on introductory part of syllabus		

- 1. John Webb & Ronald, "PLC Principles and Application", Prentice Hall India.
- 2. S.K.Sigh, "Computer Aided Process Control", Prentice Hall India.
- 3. John Hackworth & Frederick D Hackworth, "PLC: Programming Methods and Applications", Pearson Education.
- 4. Krushnakant, "Computer Based Process Control" Prentice Hall India.
- 5. Prof. Rajesh Mehra and Er. Vikram Vij, "PLC and SCADA", Laxmi Publication, Delhi.
- 6. <u>http://nptel.iitm.ac.in</u>

Elective-II Advance Microprocessor

Teachers, Paper setters and Examiners should follow the guidelines as given below. **Unit-I**

Sr. No	Unit-I: 8086 Architecture	Lecture	References
		required	
а	Introduction to 8086 microprocessor,	01	1-5
b	Register Organization,	01	1-5
С	Memory Segmentation.	01	1-5
d	Programming Model.	01	1-5
e	Memory addresses, Physical memory organization.	01	1-5
f	Architecture of 8086,	01	1-5
g	Signal descriptions of 8086- common function signals.	02	1-5
h	Interrupts of 8086.	01	1-5
Guide	ines for the examiners and paper setters:		
Questic	ns should not be asked on introductory part of syllabus		

Unit-II

Sr.N	Unit-II: Instruction Set and Assembly Language	Lecture	References	
о.	Programming of 8086	required		
а	Instruction formats,	01	1-5	
b	Addressing modes,	01	1-5	
С	Instruction set,	01	1-5	
d	Assembler directives, macros,	02	1-5	
е	Simple programs involving logical,	01	1-5	
f	Branch and call instructions,	01	1-5	
g	Sorting, evaluating arithmetic expressions,	01	1-5	
h	string manipulations.	01	1-5	
Guide	Guidelines for the examiner and paper setter.			
Quest	ions should not be asked on introductory part of syllabus			

Sr.No.	Unit-III: I/O Interface	Lecture	References	
		required		
а	8255 Programmable Peripheral interface,	02	1-5	
b	Various modes of operation of 8255 PPI,	02	1-5	
С	Interfacing of 8255 with 8086,	02	1-5	
d	Stepper motor interfacing,	01	1-5	
е	D/A and A/D converter.	01	1-5	
Guidelines for the examiner and paper setter.				
Questic	ons should not be asked on introductory part of syllabus			

Sr.No.	Unit-IV: Interfacing with advanced devices	Lecture	References	
		required		
а	Memory interfacing to 8086,	01	1-5	
b	Interrupt structure of 8086,	01	1-5	
С	Interrupt vectortable,	01	1-5	
d	Interrupt service routine.	01	1-5	
e	Introduction to DOS and BIOS interrupts,	02	1-5	
f	Interfacing Interrupt Controller	01	1-5	
g	8259 DMA Controller 8257 to 8086.	01	1-5	
Guidelines for the examiner and paper setter.				
Questic	ons should not be asked on introductory part of syllabus			

Unit - V

Sr.No	Unit-V : Introduction to Pentium microprocessor	Lecture	References
		required	
а	Historical evolution of 80286,386, 486 processors.	01	6-7
b	Pentium features and Architectures,	02	6-7
	Pentium Real mode,		
с	Pentium RISC features, Pentium super-scalar	02	6-7
	architecture - Pipelining,		
d	Instruction paring rules, Branch prediction, Instruction	02	6-7
	and Data caches.		
e	The Floating point Unitfeatures, pipeline stages & data	01	6-7
	types.		
Guidel	ines for the examiner and paper setter.		
Questi	ons should not be asked on introductory part of syllabus		

- 1. D.V.Hall, "Microprocessors and Interfacing" Tata McGraw Hill Publication, New Delhi.
- 2. A. Ray, K. Bhurchandi, "Advanced Microprocessors and Peripherals: Architecture, Programming & Interfacing", Tata McGraw Hill, Third edition, 2004.
- 3. John E. Uffenbeck, "The 8086/ 8088 Family: Design, Programming and Interfacing", Pearson, 1987.
- 4. Barry B Bray, "The Intel Microprocessors-Architecture, Programming and Interfacing", Pearson LPE/PHI, Second edition.
- 5. M.T.Savaliya, "8086 Programming and Advanced Processor Architecture", Wiley India.
- 6. James Antonakos , "The Pentium Microprocessor" , 2004, Pearson Education ISBN – 81-7808-545-3
- 7. Intel 8 bit Microcontroller manual.
- 8. <u>http://nptel.iitm.ac.in</u>

Elective-II Power System Design Practice

Teachers, Paper setters and Examiners should follow the guidelines as given below. **Unit-I**

Sr. No	Unit-I: Transmission Design Fundamentals	Lecture	References
		required	
а	Selection of voltage for high voltage transmission line,	01	1-3
b	Choice of conductor, spacing of conductor, Insulators,	01	1-3
	specification of transmission line,		
С	Surge impedance loading, Electrical & mechanical	01	1-3
	design of transmission line.		
d	Design of EHV transmission lines	02	1-3
е	Transmission of electric power at extra high voltage,	01	1-3
f	Design consideration of EHV line,	02	1-3
g	insulation coordination, Radio and television	01	1-3
	interference.		
Guide	ines for the examiners and paper setters:	•	
Questic	ons should not be asked on introductory part of syllabus		

Unit-II

Sr.No.	Unit-II: Design of Distribution Systems	Lecture	References
		required	
а	Type of distribution system arrangement,	02	1-3
b	Primary and secondary distribution design,	02	1-3
с	Calculation of distribution sizes: voltage drop and	03	1-3
	regulation,		
d	Deign of rural and industrial distribution system	02	1-3
Guideli	nes for the examiner and paper setter.		
Questic	ns should not be asked on introductory part of syllabus		
Probler	n on voltage drop and voltage regulation		

Sr.No.	Unit-III: Circuit Breakers	Lecture	References
		required	
а	Circuit breakers: operating mechanism,	01	1-3
b	Testing of Circuit breaker	02	1-3
С	Rating and selection,	02	1-3
d	Operating under special conditions,	02	1-3
e	Specification and technical details for deranged tender	02	1-3
	preparations.		
Guideli	nes for the examiner and paper setter.		
Questic	ons should not be asked on introductory part of syllabus		

Sr.No.	Unit-IV: Lighting Arrestors	Lecture	References
		required	
а	Rating characteristics, testing technical defects,	02	1-3
b	Standards followed for details insulation co ordination.	02	1-3
С	Power transformers, different types,	01	1-3
d	Tapping , fittings, cooling, , cost comparison,	01	1-3
е	Testing technical details for ordering and tender preparations.	02	1-3
Guideli	nes for the examiner and paper setter.	•	-
Questic	ons should not be asked on introductory part of syllabus		

Unit - V

Sr.No	Unit-V : Shunt Capacitors	Lecture	References
		required	
а	Need of shunt capacitor	02	1-3
b	Shunt Capacitor construction, location,	02	1-3
С	Connections, protection, analysis, special types, testing, technical details of shunt capacitor.	02	1-3
d	Earthing: Earthing systems, step potential, touch potential and transfer potential.	02	1-3
	ines for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

- 1. Pratapsingh Satnam & P.V. Gupta, "Substation Designed Equipments", Dhanpat Rai & Sons.
- 2. M. V. Deshpande, "Electrical Power System Design" TMH
- 3. B.R.Gupta, "Power System Analysis and Design," Wheeler Publishing co.

Elective-III Flexible AC Transmission System and Power Quality

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I: FACTS Concept	Lecture	References
		required	
а	Introduction to FACTS	01	1-3
b	Transmission interconnection	01	1-3
С	Opportunity for FACTS,	01	1-3
d	Basic type of FACTS controller,	01	1-3
e	Brief description of FACTs controller:	01	1-3
f	Shunt, series controller	01	1-3
g	Combination of shunt and series.	01	1-3
h	Comparison of HVDC and FACTS.	02	1-3
Guide	lines for the examiners and paper setters:	÷	

Unit-II

Sr.No.	UNIT-II: Static Shunt Compensators: SVC and	Lecture	References
	STATCOM	required	
а	Object of shunt compensation,	01	1-3
b	Midpoint voltage regulation for line segmentation	01	1-3
С	Midpoint voltage regulation for line segmentation	01	1-3
d	End of line voltage support.	02	1-3
e	Method of controllable VAR generation:	01	1-3
f	Variable impedance type and switching type VAR generators,	01	1-3
g	Variable impedance type and switching type VAR generators,	01	1-3
h	STATCOM.	01	1-3
	nes for the examiners and paper setters: ons should not be asked on introductory part of syllabus		

/IIIt - III			
Sr.No.	Unit-III: Static Series Compensators	Lecture	References
		required	
а	Objectives of Series Compensation:	01	1-3
b	Concept of series capacitive compensation,	01	1-3
С	Voltage stability.	01	1-3
d	Variable impedance type series compensators:	01	1-3
e	Thyristor switched series capacitor(TSSC)	02	1-3
f	Thyristor controlled series capacitor (TCSC).	02	1-3

Guidelines for the examiner and paper setter. Questions should not be asked on introductory part of syllabus

Sr.No.	Unit-IV: Power Quality	Lecture	References
		required	
а	Power quality definition,	01	1-3
b	Need for power quality, nonlinear loads,	01	1-3
С	Type of power quality problems:	01	1-3
d	voltage sags, voltage swells, under-voltage, interruption,	01	1-3
e	Transients, voltage unbalance, voltage fluctuation ,	01	1-3
f	Harmonics and electrical noise.	01	1-3
g	Sources of power quality problems.	01	1-3
h	Sources of power quality problems.	01	1-3
Guideli	nes for the examiners and paper setters:		
Questic	ons should not be asked on introductory part of syllabus		

Unit – IV

Unit - V

Sr.No	Unit-V : Power Quality effects and Solutions	Lecture	References
		required	
а	Effect of harmonics in pure resistive,	01	1-3
b	Effect of harmonics in inductive	01	1-3
С	Effect of harmonics in capacitive circuit,	01	1-3
d	Effect of harmonic on induction motor ,	01	1-3
е	Effect of harmonic on transformer	01	1-3
f	Effect of harmonic on power factor correction and	01	1-3
	lighting installation.		
g	Power quality standard	01	1-3
h	Mitigation by active and passive filter	01	1-4
Guidel	ines for the examiner and paper setter.		
Questi	ons should not be asked on introductory part of syllabus		

References,

- 1. N.G.Hingorani, "Understandig FACTS", IEEE Press, 1999
- 2. Yang hue Song, "Flexible AC Transmission Systems (FACTS)", IEEE Press, 199
- 3. Surajit Chattopadhyay , Madhuchhanda Mitra and Samarjit Sengupta, "Electric Power Quality", Springer
- 4. <u>http://nptel.iitm.ac.in</u>

Elective-III Generation Planning and Load Dispatch

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I: Generation	Lecture	References
		required	
а	Growth of electrical energy consumption, electrical	01	1-3
	energy sources, organization of power sector,		
b	Role of private sector in energy management,	01	1-3
С	Indian electricity grid code. Environmental issue in	01	1-3
	electric power generation.		
d	Cogeneration: Scope, advantages,	01	1-3
e	Cogeneration technology and industries suitable for	01	1-3
	cogeneration.		
f	Captive power generation: advantages, constrain,	01	1-3
	government policies, energy banking and energy		
	wheeling.		
g	Distributed power generation: advantages and function	01	1-3
h	Electricity deregulation : need advantages, power player	02	1-3
	,metering and energy billing deregulation. Roll of load		
	dispatch centers.		
Guide	lines for the examiners and paper setters:		

Unit-II

Sr.No.	UNIT-II: Generation Planning	Lecture required	References	
а	Objectives of generation system planning, long term and short term planning,	01	1-3	
b	Low range& short range hydro thermal scheduling of generation the short term	02	1-3	
С	Long term hydro thermal scheduling of generation, co ordination equation.	02	1-3	
d	Policy studies, co-ordination of steam, hydro & nuclear power stations.	02	1-3	
e	Optimum generation allocation-	01	1-3	
f	Line losses neglected & including the effect of transmission losses for thermal power generations.	01	1-3	
	Guidelines for the examiners and paper setters: Questions should not be asked on introductory part of syllabus			

Sr.No.	Unit-III: Load Energy Forecasting	Lecture	References			
		required				
а	Classification of loads,	01	1-3			
b	Load forecasting methodology.	01	1-3			
С	Peak demand forecasting-	01	1-3			
d	Non whether sensitive forecast-	01	1-3			
e	Weather sensitive forecast-total forecast-	02	1-3			
f	Annual and monthly peak demand forecast.	02	1-3			
Guideli	Guidelines for the examiner and paper setter.					
Questic	ons should not be asked on introductory part of syllabus					

Sr.No.	Unit-IV: Generation System Cost Analysis	Lecture	References			
		required				
а	Capacity cost, generation cost,	01	1-3			
b	Depreciation, effect of load factor on unit energy cost,	02	1-3			
С	Analysis of fixed and operating cost of steam plant,	01	1-3			
d	Hydro plants and nuclear plant,	01	1-3			
e	Roll of diversity in power system economics,	01	1-3			
f	Fuel inventories,	01	1-3			
g	off peak energy utilization.	01	1-3			
Guideli	Guidelines for the examiners and paper setters:					
Questic	Questions should not be asked on introductory part of syllabus					

Unit - V

Sr.No	Unit-V : Generation System Reliability Analysis	Lecture	References
		required	
а	Probabilistic generation unit	02	1-3
b	Model &load model effective load	02	1-3
С	Reliability analysis for isolated system	02	1-3
d	system reliability of interconnected system.	02	1-3
Guidel	Guidelines for the examiner and paper setter.		
Questi	Questions should not be asked on introductory part of syllabus		

- 1. B.R. Gupta, "Generation of Electric Energy" Euresia Publishing House Pvt. Ltd.
- 2. R.L.Sullivan, "Power System Planning", McGraw Hill.
- 3. Kirchmayers L.K., " Economic Control of Interconnected System" John Wiley & Sons, New York.
- 4. <u>http://nptel.iitm.ac.in</u>

Elective-III High Voltage Transmission

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I: EHV AC Transmission	Lecture	References
		required	
а	Role of EHV AC Transmission, Standard of transmission voltage,	01	1-3,5
b	Average line parameter.	01	1-5,5
С	Power transmission, power-handling capacity and line loss,	01	1-3,5
d	Corona effect: power loss and audible noise, copper loss and corona loss,	02	1-5,5
e	Corona loss formula, audible noise generation and characteristic.	01	1-3,5
f	Electrostatic field of EHV lines. Traveling waves and standing waves,	02	1-5,5
g	Line energization with trapped-charge voltage	01	1-3,5

Unit-II

Sr.No.	UNIT-II: Maximum Power Transfer and Stability	Lecture	References
	Limit	required	
а	Power Transfer at voltage stability limit of EHV lines,	01	1-3,5
b	Magnitude of receiving end voltage,	01	1-5,5
C	Voltage Magnitude of receiving end voltage during maximum power transfer.	01	1-3,5
d	Magnitude of Maximum power and stability limit.	02	1-5,5
e	Optimal reactive power at voltage stability limit	01	1-3,5
f	Magnitude of Maximum power and stability limit. Optimal reactive power at voltage stability limit	01	1-5,5
g	Voltage collapse in EHV lines, reactive power requirement for voltage in long line.	01	1-3,5
h	Voltage stability	01	1-3,5
	nes for the examiner and paper setter.	-	-

Question should not be asked from introductory part of syllabus.

Sr.No.	Unit-III: Over-voltages in EHV System	Lecture	References
		required	
а	Origin of over voltage and their types	01	1-3,5
b	Over Voltage in EHV system caused by switching	01	1-5,5

	operation:		
С	Interruption of inductive	01	1-3,5
d	Interruption capacitive currents, Ferro-response over voltage,	02	1-5,5
e	Calculation surges, Power frequency voltage control and over voltages, Power circle diagram.	02	1-3,5
f	Surge impedance and insulation coordination.	01	1-5,5
	elines for the examiner and paper setter. tions should not be asked on introductory part of syllabus.		

Sr.No.	Unit-IV: HVDC Transmission	Lecture	References
		required	
а	Comparison of EHV and HVDC transmission system	01	4,5
	based on: Economics of power transmission		
b	Comparison of EHV and HVDC transmission system	01	4,5
	based on: technical performance and reliability.		
С	Description of HVDC transmission system :	01	4,5
d	Type of link, converting stations.	01	4,5
е	Principle of DC link converter,	02	4,5
f	characteristic, modification and control characteristic	02	4,5
Guideli	nes for the examiners and paper setters:		
Questic	on should not be asked from introductory part of syllabus.		

Unit - V

Sr.No	Unit-V : Reactive power control and stability	Lecture	References
		required	
а	Reactive power requirement in steady state,	02	4,5
b	Conventional control strategies	01	4,5
С	Alternate control and forced commutation	02	4,5
d	Sources of reactive power,	01	4,5
е	Stability: synchronous and asynchronous link.	02	4,5
Guidel	ines for the examiner and paper setter.		
Questi	ons should not be asked on introductory part of syllabus		

- 1. A.Chakrabarti, D.P.Kothari, A.K. Mukhopdadhyay, "Performance, Operational & Control of EHV Power System", Wheeler publications.
- 2. Rakosh Das Begamudre "Extra high-voltage A.C. Transmission Engineering" New Age International.
- 3. S. Rao, "EHVAC & HVDC Transmission Engineering & Practice", Khanna Publications.
- 4. K R padiyar, "HVDC Power Transmission System" New Age International Publication.
- 5. <u>http://nptel.iitm.ac.in</u>

Elective-III Electromechanical Energy Conversion

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I: Magnetically Coupled Circuits And	Lecture	References
	Transformer:	required	
a	Self and mutual flux linkages and inductances.	01	1-6
b	Voltage Equation of coupled circuits.	01	1-6
С	Coefficients of coupling and leakage coefficient.	01	1-6
d	Two winding transformers:	02	1-6
e	Steady state and transient analysis using mutual and self inductances.	01	1-6
f	Variable frequency transformers.	02	1-6
g	Energy flow considerations.	01	1-6
Guide	lines for the examiners and paper setters:	1	

Unit-II

Sr.No.	UNIT-II: Electrochemical Energy Conversion	Lecture	References
	Principles:	required	
а	Electrochemical System,	01	1-6
b	Energy process in electromagnetic systems.	01	1-6
С	Law of conversation of energy as applied to	01	1-6
	electromechanical system.		
d	Linear and non-linear, singly and doubly excited	02	1-6
	magnetic systems;		
e	Energy and co-energy, various expressions for forces	01	1-6
	and torques;		
f	Energy, forces and torque in a system of rigid currents.	01	1-6
g	Application to various magnetic field transducers.	02	1-6
Guideli	nes for the examiner and paper setter.		
Questio	n should not be asked from introductory part of syllabus.		

-							
	Sr.No.	Unit-III: Electric Field And Transducers		References			
			required				
	а	Quasi-static electric fields as coupling medium,	02	1-6			
	b	Energy forces and torques in a system of charged	02	1-6			
		conductors,					
	С	Application of electric field transducers.	02	1-6			
	d	Incremental motion transducers (detailed analysis of	02	1-6			

few cases).				
Guidelines for the examiner and paper setter.				
Questions should not be asked on introductory part of syllabus.				

Sr.No.	Unit-IV: Basic Rotating Machines	Lecture	References		
		required			
а	Common structural features of rotating machines.	02	1-6		
b	Machine windings and their basic properties.	02	1-6		
С	Distributed bindings as current sheets.	02	1-6		
d	Equivalence between concentrated and distributed windings M.M.F. and flux distributation and various windings. Rotating magnetic field.		1-6		
	Guidelines for the examiners and paper setters: Question should not be asked from introductory part of syllabus.				

Unit - V

Sr.No	Unit-V: Types Of Rotating Machines	Lecture	References
		required	
а	Commutator machines	02	1-6
b	Synchronous machines	02	1-6
С	Asynchronous machines	02	1-6
d	Induced e.m.f.s and electromagnetic torque in non salient pole machines.	02	1-6
	ines for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

- 1. Rakosh Das, Begamudre, "Electromachinical Energy Conversion" Wiley Eastern Publication.
- 2. Gourishankar, "Electromechnical Energy Conversion".
- 3. Fitzgerald, Kingsley & Kusko, "Eletric Machinary" McGraw Hill Kogo Kusha Ltd.
- 4. Dr. P S Bimbhra, "Electrical Machinary", Khanna Publication.
- 5. Dr. P S Bimbhra, "Generalized Electrical Machinary", Khanna Publication.
- 6. R K Srivastava, " Electrical Machines" Second Eddition, Cengage Learning.

Power System Stability (Lab Course Contents)

S.N.	Lab Experiment	Hours
5.IN.		required
1	Determination of Parameters and time constants of synchronous	02
T	machines	
2	Synchronous machine of infinite bus: Effect of Excitation	02
3	Effect of saturation and & determination of equivalent reactance's of	02
3	synchronous machines.	
4	Retardation test on synchronous machines to find moment of inertia of	02
4	rotating part and angular momentum.	
5	To obtain power angle characteristics of lossy & lossless lines.	
6	To study transient stability by point by point method.	
7	To determine the steady state stability limit of short transmission line.	
8	To determine SSSL of long transmission line.	
9	Study of clerk's diagram.	
10	Study of different types of automatic voltage regulator.	

Teacher should facilitate learning following lab experiments:

Note: Lab file should consist of minimum Eight experiments.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked questions on practical. Evaluation will be based on answer given by student in the oral examination.

Switchgear and Protection (Lab Course Contents)

S.N.	Lab Experiment	Hours
5.14.		required
1	To conduct and study of Arc extinction phenomenon : Application in air	02
1 I	circuit breaker.	
2	Study of relaying components and control circuit developments.	02
3	To conduct and plot the characteristic of rewirable fuses and MCB	02
4	To conduct plot operating characteristics of Inverse time over current	02
4	relay.	
5	To conduct Over current & earth fault protection scheme of alternator.	
6	To conduct Protection of 3 phase transformer using differential relay	02
0	(Merz- Price protection scheme)	
7	To conduct and study the through fault stability of differential	02
′	protection scheme for transformer.	
8	To conduct Protection of transmission line.	02
9	Study of MHO distance relay to plot. a) R- X diagram b) Relay voltage	02
9	Vs Admittance characteristic.	
10	Study of Static relay	
11	Demonstration of microprocessor base protection.	

Teacher should facilitate learning following lab experiments:

Note: Lab file should consist of minimum Eight experiments.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked to perform any one practical. Evaluation will be based on paper work , practical performance and oral in the practical examination.

Elective -II Computer Aided Power System Analysis Lab (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours
3.IN.	Lab Experiment	
1	Program for determination of the parameters of the equivalent circuit.	02
2	Program for building of Z _{Bus} by addition of branch.	02
3	Program for building of Z_{Bus} by addition of link.	02
4	Program for illustration of the Ferranti Effect.	02
5	Program for the formation of Y _{Bus} by Singular Transformation.	
6	Program for load flow by Newton Raphson Method.	
7	Program for Balanced Three phase short circuit.	
8	Program for Unbalanced short circuits.	
9	Program for Fault analysis of Power System network of an Electric Utility Company.	
10	Study of IEC and ANSI standards for Short circuit analysis.	
11	Introduction to PSCAD	
12	Introduction to ETAP	

Note: Lab file should consist of minimum **Eight** experiments.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked questions on practical. Evaluation will be based on answers given by students in oral examination.

Elective -II Industrial Automation (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours
5.IN.		required
1	Study of programmable logic controller.	
2	Study of programming languages.	02
3	3 Develop and implement any PLC program using ladder/FBD programming language.	
4	Interfacing of PLC to any SCADA through modbus protocol.	
5	Developing and implementing any control loop using PLC system.	
6	Study of SCADA system.	
7	Study of DCS system.	02
8	Study of interfacing devices/ protocols like modbus, Profibus etc.	
9	To controller conveyer belt system from online programming system.	
10	To develop total controlling panel for settlement of conveyor based automation system.	

Note: Lab file should consist of minimum Eight experiments.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked questions on practical. Evaluation will be based on answers given by students in oral examination.

Elective -II Advance Microprocessor (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	
J.N.		required
1	Study of architecture and instructions set of 8086 microprocessor.	02
2	Study of architecture of Pentium microprocessor.	02
3	Microprocessor 8086 assembly language programs based on data transfer instruction	02
4	Microprocessor 8086 assembly language programs based on arithmetic instruction	02
5	Microprocessor 8086 assembly language programs based on logical instruction	02
6	Applications of microprocessor 8086 in measurement of electrical quantity.	
7	Applications of microprocessor 8086 in Electrical drives and speed control for stepper motor.	
8	Program to convert the temperature in degree centigrade to ferniest by 8086 microprocessor.	
9	Program to find highest and lowest marks in the examination by 8086 microprocessor	
10	Program to sort the numbers in ascending order and descending order by 8086 microprocessor.	
11	Program to find the number of negative numbers in the array by 8086 microprocessor.	
12	12 Program for conversion of BCD to Hex and Hex to BCD	

Note: Lab file should consist of minimum Eight experiments.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked questions on practical. Evaluation will be based on answers given by students in oral examination.

Elective -II Power System Design Practice

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	
5.IN.		required
1	Draw the substation layout for 400KV.and design the three phase	04
	transmission line with electrical consideration.	
2	Sag-Tension calculation	
3	Different busbar arrangement and isolating switches.	
4	Different types of circuit breaker.	
5	Different types of Lightning Arresters	04
6	Design of Earthling system for 132/400KV substation.	

Note: Lab file should consist of minimum **five** drawing sheet along with report.

Guide lines for ICA :

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal and drawing sheet.

Guide lines for ESE:-

In ESE the student may be asked questions on drawing sheet. Evaluation will be based on answers given by students in oral examination.

Industrial Lecture (Course Contents)

1	There is a need to create avenues for a close academia and industry interaction through			
	all the phases of technology development, starting from conceptualization down to			
	commercialization.			
2	List of renowned persons from industry shall be prepared by the committee appointed			
	by Head of the department. After approval from the Principal, Minimum five Industrial			
	lectures in alternate week shall be arranged, which shall be delivered by the			
	experts/Officials from Industries/Govt. organizations/ Private Sectors/Public Sectors /			
	R&D Labs covering the various aspects.			
3	Topics of Industrial Lectures shall be Technical in nature and should not be the specific			
	contents from the curriculum.			
4	Minimum five Lectures to be delivered by experts from the industry in alternate			
	weeks.			
5	Students shall submit the report based on minimum five lectures giving summary of the			
	lecture delivered.			
6	The summary should contain brief resume of the expert, brief information of his			
	organization and brief summary of the lecture in bullet point form.			

Guide lines for ICA : Assessment of the Industrial Lecture for award of ICA marks shall be done jointly by departmental committee as per attendance in industrial lecture, report submitted by student and overall performance in semester as per the guidelines given in **Table- D**

	Table-D					
SN	Name of Student	Attendance	Dept of	Report	Total	
		(05 Marks per	Understanding	Writing		
		Lecture)	(03 Marks per			
			Lecture)			
		25	15	10	50	

Table-D

	(Lab Course Contents)							
1	Project-I work decided in VII semester shall be continued as Project-II							
2	Students should complete implementation of ideas given in synopsis/Abstract, so that							
	project work should be completed before end of semester.							
3	Project-II may involve fabrication, design , experimentation , data analysis within							
	realistic constraints such as economic, environmental, social, ethical, health and safety,							
	manufacturability, and sustainability. The stage also includes testing , possible results							
	and report writing							
4	Each students project group is required to maintain log book for documenting variou							
	activities of Project-II and submit group project report at the end of Semester-VIII in							
	the form of Hard bound.							
	a. Title							
	b. Abstract							
	c. Introduction							
	d. Problem identification and project objectives							
	e. Literature survey							
	f. Case study/Analysis/Design Methodology							
	g. Project design and implementation details							
	h. Result and conclusion							
	i. Future scope							
	j. references.							

Project-II (Lab Course Contents)

Guide lines for ICA : ICA shall be based on continuous evaluation of students performance throughout semester in project-II and report submitted by the students project group in the form Hard bound. Assessment of the project-II for award of ICA marks shall be done jointly by the guide and departmental committee as per the guidelines given in **Table-D**.

Guide lines for ESE:-

In ESE the student may be asked for demonstration and questions on Project. Evaluation will be based on answers given by students in oral examination.

Assessment of Project-II

Name of the Project: _____

Name of the Guide: _____

Table-D

		Assessment by Guide (50 Marks)				Assessment by Committee (25 Marks)		
SN	Name of Student	Attendance , Participation and team work	Material procurement/ assembling/De signing/Progra mming	Case study/ Execution	Project Report	Dept of Understan- ding	Presentation	Total
N	larks	10	15	15	10	10	15	75