NORTH MAHARASHTRA UNIVERSITY, JALGAON

SYLLABUS

Master of Science in Microbiology

Part-II (Semester – III and IV)

w. e. f. June 2013

NORTH MAHARASHTRA UNIVERSITY, JALGAON **MICROBIOLOGY**

Syllabus for M.Sc. (Part- II) Microbiology

Effective from June 2013

Subject code	Title of the paper	Duration (Hrs./Wk)	Max. Marks	Exam. Time (Hrs.)
	SEMESTER – III			
	Theory courses			
MB-301	Applied and Environmental Microbiology	04	100	03
MB-302	Molecular Biology and Bioinformatics	04	100	03
MB-303	Pharmaceutical Microbiology	04	100	03
	Laboratory courses			
MB-304	Methods in Biostatistics and Bioinformatics	04+04	100	06
MB-305	Methods in Applied Microbiology	04+04	100	06
	SEMESTER – IV			
	Theory courses			
MB-401	Fermentation Technology	04	100	03
MB-402	Applied Molecular Biology	04	100	03
MB-403	Agricultural Microbiology	04	100	03
	Laboratory courses			
MB-404	Methods in Biotechnology	04+04	100	06
MB-405	Project Dissertation	04+04	100	06

Instructions:

- 1. Each theory course has to be completed in 50 lectures of 60 min duration each in one semester.
- 2. Semester II and IV will have THREE theory courses and TWO Practical courses
- 3. Practical examination of each laboratory course shall be conducted at the end of each respective semester.
- 4. Each course will be of 100 marks (20 marks internal assessment and 80 marks-external examination) under NMU affiliated colleges and Institutions.
- 5. Each course will be of 100 marks (25 marks internal assessment and 75 marks-external examinations) in the School of Life Sciences of NMU, Jalgaon.

SEMESTER III

	MB-301 Applied and Environmental Microbiology	Lectures
Unit I	Food Microbiology	10
	Methods of sampling and investigation	
	Preparation of dilutions	
	General viable count	
	Detection and enumeration of indicator bacteria	
	Pathogenic and toxigenic microbes	
	Mycotoxins	
	Microbiological examination of specific foods	
	 Meat and meat products 	
	 Milk and milk products 	
	Food intoxications	
	 Causes, pathogenesis and prevention of food spoilage and 	
	preservation	
Unit-II	Microbiological treatment of waste water	10
	Principles and need for biological waste water treatment	
	Conventional treatment process	
	Primary- Sedimentation or settling	
	Biological-	
	- Aerobic suspended-growth,	
	- Aerobic attached-growth (TF, RBC, PBR),	
	- Anaerobic suspended growth	
	- Anaerobic attached growth	
	Advanced tertiary process	
	- Solids removal	
	- Biological nitrogen removal	
	- Biological phosphorus removal	
	- Disinfection	
	Waste water treatment for distillery, tannery & antibiotic	
	industries	
	Solid waste management	
	o Composting: Principle, chemistry and biology of composting,	
	technology of composting, criteria of compost maturity,	
	applications of compost	
	o Biomethanation: Feedstocks, BMP, microbiology of	
	biomethanation, biochemistry of methane synthesis.	
Unit- III	Biological conversion of Lignocellulosic waste	10
	Composition and structure of lignocelluloses	
	Pretreatment of lignocellulosic material	
	Biological conversions	
	Liquid-state fermentation	
	Solid-state fermentation (SSF)	
	Utilization of lignin component of lignocelluloses	

	Problems of lignocellulose bioconversion	
Unit- IV	Bioremediation and biodegradation of xenobiotics	10
	Concept of biodegradability and bioconversion	
	 Principles for measuring biodegradability 	
	Mechanism of biodegradation / bioremediation	
	 Methods for bioremediation 	
	o Intrinsic	
	 Biostimulation 	
	 Bioaugmentation (selection and screening of microbial strains) 	
	 Impediments to microbial degradation of compounds 	
	Biodegradation of xenobiotics (Pesticides, halogenated compound	
	etc.)	
	 Conventional microbial enumeration 	
	 Biochemical/ physiological approach 	
	o Molecular techniques	
	o Toxicological risk assessments	
Unit- V:	Biomarkers and Bioreporters	10
	 Concept and approaches for metagenomics analysis and ecological 	
	inference	
	Concept w.r.t. probing microbes from environment	
	Biomarker gene (antibiotic and heavy metal resistance genes, ice-	
	nucleation, bioluminescence genes, green fluorescent genes)	
	Bioreporter genes	

- Singh, A. and Ward, O. P. (2004) Biodegradation and Bioremeedaition, Springer-Verlag,, Berlin (ISBN: 3-540-21101-2)
- Hurst, C.J. (2002) Manual of Environmental Microbiology, ASM Press, Washington D.C. (ISBN: 1-55581-199-x)
- Demain, A. L. and Davies, J. E. (1999) Manual of Industrial Microbiology and Biotechnology, ASM Press, Washington D.C. (ISBN: 1-55581-128-0)
- Martin, A. M. (1998) Bioconversion of waste materials to Industrial Products, Blackie Academic and Professional, London (ISBN: 0-7514-0423-3)
- Harrigan, W. F. and McCance, M.E. (1994) Laboratory Methods in Food and Dairy Microbiology. Academic Press, London
- Mossel, D.A.A., Correy, J.E.L., Struijk, C.B. and Baird, R. M. (1995) Essesntials of the Microbiology of Foods, John-Wiley and Sons Inc., New York.
- Satyanaraya, U. (2005) Biotechnology, Books and Allied (P) Ltd., Kolkata
- Hobbs, B & Roberts, D. (1993) Food Poisoning & Food Hygiene, Edward Arnold, London
- Baker, K.H. and Herson, D. S. (1994) Bioremediation, Mc-Graw Hill Inc., New York.
- Pandey, A. (2004) Concise Encyclopedia of Bioresource Technology, Food Products Press, The Haworth Reference Press, New York (ISBN: 1-56022-980-2)
- Rehm, R. G. and Reed, G. (1984) Biotechnology, Vol.1-8, Verlag-Chemie, Weinheim.
- Forster, C. F. (1985) Biotechnology and waste water treatment, Cambridge University Press, Cambridge.
- Maier, R. Pepper, I. L. and Gerba, C. P. (2000) Environmental Microbiology, Academic Press, London

	MB-302 Molecular Biology and Bioinformatics	Lectures
Unit I:	Basics molecular biology	10
	DNA: topological properties (linking, writhing, twisting number),	
	Structure of superhelix, Base flipping, Palindrome, Inverted repeats	
	and stem and loop.	
	Overview of DNA replication DNA: Structure types and functions	
	 RNA: Structure, types and functions Denaturation and renaturation kinetics of nucleic acids 	
	 Proteins: Domain and motifs Histone proteins, 	
	DNA –Protein interactions - helix-loop-helix, helix-turn-helix,	
	leucine zipper, Zinc finger motifs,	
Unit II	Transcription	10
	• Types of RNA polymerase (prokaryotic & eukaryotic), Process of	
	transcription	
	• mRNA processing, editing: capping, adenylation, splicing, RNA	
	 transport transcriptional regulation: transcriptional bursting/pulsing, specificity 	
	factors, enhancers, repressors, activators and general transcription	
	factors	
	• post-transcriptional modifications:, RNA degradation, nuclear	
	transport, mRNA localization, anti-sigma factors, RNAi (siRNA,	
	miRNA and CRISPR mechanism)	
Unit III:	Translation	10
	Ribosome (structure and composition), Activation of tRNA, tRNA symbology	
	sythetaseSteps: Initiation: factors and their regulation, Elongation,	
	Termination	
	Inhibitors	
	Post translational modification of proteins and protein degradation	
	Translational regulation: Cytoplasmic polyadenylation, UTR	
	sequence elements, RNA binding proteins, ribosomal regulation,	
	non-sense mediated RNA decay, 5` decapping	1.0
Unit IV	Protein targeting & degradation	10
	• Signal hypothesis	
	Signal sequences in bacteria Mambrana and Lysasamal pratain targeting	
	Membrane and Lysosomal protein targetingHSP and Chaperons	
	HSP and ChaperonsProtein degradation	
Unit V	Basic Bioinformatics	10
	Biological databases :Nucleic acid databases (GenBank, EMBL,	1
	DDBJ)	
	Protein sequence data base (UniProt, PDB, PIR)	
	Scoring matrices, local. global and multiple sequence alignment	
	Database search for homologous sequences, BLAST	
	Phylogenetic analysis: Overview and tree construction methods	

- Lewin B. (2013) Gene XI, Pearson Prentice Hall, Pearson Education, Inc., NT, USA (ISBN: 0-13-123826-4)
- Malacinski GM (2003) Essentials of Molecular Biology, 4th edn., Jones & Batiett, London. (ISBN: 0-7637-2133-6)
- Watson JD, Baker JA, Bell SP, Gann A, Lewin M, Losick R (2004) Molecular Biology of the Gene, Benjamin Cummings- CSHL Press, USA
- Stryer, Lubert () Biochemistry 5th edn. W. H. Freeman & Co. New York
- Wink M. (2006) An Introduction to Molecular Biotechnology, Wiley-VCH Verlag Gmbh & Co., Weinheim, Germany (ISBN: 978-3-527-31412-6/3-527-31412-1)
- Weaver, RF (1999) Molecular Biology, WCB McGraw-Hill Co. Inc., NY (ISBN: 0-697-14750-9)
- Brown, TA (1995) Essential Molecular Biology, Vol. I, A Practical Approach, IRL Press, Oxford, UK
- Nelson DL & Cox MM (2005) Lehninger's Principles of Biochemistry, 4th edn., McMillan Worth Publ. Inc. NY
- Russell, PJ (1998) Genetics, 5th edn, Benjamin-Cummings Publ. Co. Inc., NY (ISBN: 0-321-0038-2)
- Oliver, RP and Schweizer, M. (1999) Molecular Fungal Biology, Cambridge University Press, Cambridge, UK (ISBN: 0-521-56784-X)
- Klug, WS and Cummings, MR (2003) Concepts of Genetics, 7th edn., Pearson Education Inc., (ISBN: 81-7808-884-3)
- Bates, AD and Maxwell, A (2006) DNA Topology, Indian Edn., Oxford University Press, New Delhi (ISBN: 0-19-56831-X)
- Turner, PC, McLennan, AG, Bates AD and White, MRH (2002) Instant Notes: Molecular Biology, 2nd edn., Viva Books Pvt. Ltd., New Delhi (ISBN: 81-7649-215-9)
- Lesk, AM (2002) Introduction to Bioinformatics, Oxford University Press, UK (ISBN:0-19-925196-7)
- Korf, I, Yandell, M and Bedell, J () An essential guide to the Basic Local Alignment Search Tool-BLAST O'Reilly Network Publishers, (ISBN:)
- Baxevanis, A. D. and Ouellette, B. F. F. (2001) Bioinformatics: A practical guide to the analysis of genes and proteins. Second Edition. John Wiley & Sons, New York.
- Mount, D. W. (2001) Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory Press, New York.
- Zoe L. and Terence C. (2004) Bioinformatics: Managing Scientific Data, Morgan Kaufmann Publishers, New Delhi.

	MB-303 Pharmaceutical Microbiology	Lectures
Unit I	 Antibiotics and Synthetic antimicrobial agents Mechanism of action, microbial resistance, therapeutic, prophylactic usage and adverse reactions Antibiotic and Synthetic antimicrobial agents: β-lactam, aminoglycosides, tetracyclines, ansamycins, macrolides Antifungal antibiotics: Griseofulvin Antiviral drugs: Amantidines, Nucleoside analogues, Interferons Peptide antibiotics Synthetic antibiotics: Sulphonamides, Chloramphenicol, Quinolone 	10
Unit II	 Microbial aspects of pharmaceutical products Microbial contamination (atmosphere, water, operator, raw material, packaging, buildings, equipments) Microbial spoilage (Types & factors affecting) & preservation Sterilization of pharmaceuticals (survivor curve, D, Z, F value) Methods: Heat, Gaseous, Radiation, Filtration Disinfectants 	10
Unit III	Regulatory aspects and quality assurance in pharmaceuticals GMP in pharmaceuticals FDA regulation and pharmacopeia Reimbursement of drugs and biologicals Quality control through WHO, ICH process Design of sterile product manufacturing unit Quality control in pharmaceuticals: In-process & final product control Sterilization control: physical, chemical & biological indicators sterility testing (sampling & methods)	10
Unit V	 Production of Biopharmaceuticals SK and SD, Asperaginase, Clinical dextran Vaccines (DNA/ multivalent subunit/ bacterial) Viral vaccines: Live attenuated, Inactivated, , Live recombinant Virion subunit vaccines, production of viruses for vaccines, Virus-like particles, Synthetic peptide vaccines, DNA vaccines Immunosera Novel therapeutics / biopharmaceuticals 	10
Unit VI	 Rational drug design Concept of lead drug Pro-drug: concept and its applications Structure based and combinatorial approach Peptidomimetic and strategies for drug discovery Biopolymers for drug delivery 	10

- Hugo, WB and Russell, AD (2003/1998) Pharmaceutical Microbiology, 6th edn, Blackwel Science, Oxford, UK (ISBN: 0-632-04196-X) Reprinted
- Krogsgaard-Larsen, P., Lilijefors, T. and Madsen, U. (2004) Textbook of Drug Design and Discovery, 3rd edn., Taylor and Francis, London (ISBN: 0-415-28288 PB)
- Haider, SI (2006) Validation Standard Operating Procedures, 2nd edn., CRC Press Taylor and Francis Group, NY (ISBN: 0-8493-9529-1)
- Dutton CJ, Haxell MA, McArthur HAI and Wax RG (2002) Peptide Antibiotics, Marcel Dekker Inc., NY, USA (ISBN: 0-8247-0245-X) Seth SD (2004) Textbook of Pharmacology, 2nd edn., Elsvier, New Delhi (ISBN: 81-
- 8147-553-4)
- Bhatia R and Ichhpujani RL (1995) Quality Assurance in Microbiology, CBS Publishers, New Delhi (ISBN: 81-239-0387-1)
- Chakraborty C and Bhattacharya A (2004) Pharmacogenomics: An approach to New Drug Development. Biotech Books, New Delhi (ISBN: 81-7622-105-8)

	MB 304 Methods in biostatistics and Bioinformatics
1	Basic concepts: Population, Sampling, Accuracy, Precision, sampling
	errors, experimental design, Process optimization. Significance of statistics
2	in microbiology and description to choose an appropriate statistical test. Calculate mean, median, mode, range, variance, standard deviation,
2	standard error, confidence interval using MS-Excel/suitable software
3	Plot straight Line (Linear Least squares) using LINEST Function of MS-excel/ suitable software
4	Plot - line, scatter graphs, bar graphs, error bars using MS-Excel/suitable software
5	Determine: linear regression, Correlation and their coefficients using MS- Excel/suitable software
6	Compute paired and unpaired, F-test, t-test, ANOVA, χ2-test using MS-Excel/suitable software
7	Introduction to Sigma Stat/SPSS/R/Minitab/any commercially available biostatics software
8	Using biological databases - Protein Data Bank and GenBank
9	Different types of sequence analysis using BLAST
10	Multiple sequence alignments and Phylogenetic analysis.
11	Protein structure prediction software.
12	Primer designing using biological software
13	Genomes and Proteomes available on the web and their use.

- Bailey, N.T.J (1959) Statistical methods in Biology, ELBS and The English Universities Press Ltd., UK
- Irfan Ali Khan and Atiya Khanum (2004) Fundamentals of biostatistics, Ukaaz Publication, Hydrabad.
- Gupta, S. C. Fundamentals of Statistics, Himalaya Publishing House, New Delhi.
- Bliss, C. I. K. (1967) Statistics in Biology, Vol. 1, McGraw-Hill, New York.
- Gore A, Paranjpe, S. and Kulkarni M. (2009) Statistics for everyone, SIPF Academy Publishers, Nashik
- Baxevanis, A. D. and Ouellette, B. F. F. (2001) *Bioinformatics: A practical guide tothe analysis of genes and proteins*. Second Edition. John Wiley & Sons, New York.
- Ewens Warren J. and Gregory R. Grant. (2004) *Statistical Methods in Bioinformatics, An Introduction*, Springer, New York.
- Lacroix, Z. and Critchlow, T. (Eds.) 2003. *Bioinformatics. Managing Scientific Data*. Morgan Kaufmann Publishers.
- Misener, S. and Krawetz, S. A. (Eds.). 2000. *Methods in Molecular Biology*, Volume 132. Bioinformatics: Methods and Protocols. Humana Press, New Jersey.
- Mount, D. W. (2001) *Bioinformatics: sequence and genome analysis*. Cold Spring Harbor Laboratory Press, New York.

	MB 305 Methods in Applied Microbiology
1	Validation of autoclave
2	Phenol coefficient (RW Test/Chick Martin Test),
3	Sterility Test (Direct inoculation/ Membrane filtration)
4	Microbial Assay (Antibiotic /Vitamins),
5	Microbial Limit Test (analysis of water, raw material, finished product,
	packaging material, Excipients)
6	Demonstrations: SOP, documentation, Pharmaceutical audits, GMP, FDA,
	WHO guidelines Market surveillance and monitoring
7	Demonstrations : Ames test, Pyrogen test
8	Environmental monitoring samples from production areas and personnel.
9	Test for endotoxin/pyrogen using LAL (e.g., water, in-process, final
	product)
10	Test for bioburden (e.g. water, in-process, final product)
11	Test sterilization cycles with biological indicators.
12	Test for quality of media/reagents using growth promotion tests.
13	Sterility testing of in-process materials and finished products

- White, D (2000) The Physiology and Biochemistry of Prokaryotes, Oxford University Press, Oxford
- Mu dili, J (2007) Introductory Practical Microbiology, Narosa Publ. House Pvt. Ltd., New Delhi (ISBN: 978-81-7319-744-4)
- Primrose, SB and Wardlow, AC (1982) Source Book for Experiments for the Teaching of Microbiology, Academic Press, London (ISBN: 0-12-565680-7)
- Sawhney, SK and Singh, R. (2001) Introductory Practical Biochemistry, Narosa Publ. House, Chennai

$\boldsymbol{SEMESTER-IV}$

	MB-401 Fermentation Technology	Lectures
Unit I	Underlying principles, Upstream processing	10
	Metabolic pathways and control mechanisms	
	Fermentation- kinetics of batch and continuous culture	
	Designing of medium and strain improvement	
	Microbial growth kinetics and measurement of cell growth	
	Stoichiometry of microbial growth and product formation	
Unit II	Bioreactors (Design and Application) bioreactor operation	10
	 Design and construction materials of bioreactor 	
	 Parameters involved in fermentation process monitoring 	
	 Aeration and agitation for mass transfer 	
	 Strategy for medium sterilization, maintenance of aseptic/axenic condition 	
	Control of process parameters and overview of process	
	automation	
	Scale up	
Unit III	Downstream processing and product recovery	10
	Biomass harvesting: centrifugation, filtration	
	Cell disruption: ultrasonication, thawing, enzymatic way.	
	 Product extraction: Liquid –liquid, supercritical fluid extraction, ultrafiltration, Three phase partitioning 	
	Product purification: Chromatography- adsorption, size	
	exclusion, affinity, ion exchange, reverse phase, HPLC	
	 Characterization and analysis of recovered product: purity, 	
	contaminants	
	Quality practices and audit	
	 Quality practices- concept of SOP, GLP and role of FDA 	
	 Biosafety aspects of handling infectious organisms 	
	 IPR: Patents, copyrights, trademarks, geographical indications 	
	 Patenting biological materials, transgenic materials 	
	Patent regulatory bodies at National and International level	
Unit IV	Microbial Products I	10
	Types of products: primary and secondary, extra- and intra-cellular	
	Fermentations:	
	o Enzymes: Protease, asparginase	
	 Organic acids: citric acid, lactic acid 	
	o Amino acids: Lysine, aspartic acid	
	o Polysaccharides: Alginate, Hyaluronic acid	
Unit V	Microbial Products II	
	Fermentations:	10
	Antibiotics: Penicillin, streptomycin / phenazines	10
	• Ethanol: 1 st and 2 nd generation	
	Vaccines production: DPT, MMR	

- Recombinant proteins: Insulin, Monoclonal antibodies
- Nucleotides: IMP, GMP

- Mukhopadhyay, S.N. (2004) Process Biotechnology Fundamentals, 2nd edn., Viva Books, Mumbai, (ISBN: 81-7649-496-8)
- Shuler M.L.and Kargi F (2008) "Bioprocess Engineering--basic Concepts", 2nd Edn. Prentice-Hall
- The Indian Environmental Protection Act (EPA), 1986
- Food Safety and Standards act (Government of India), 2006
- El-Mansi, EMT, Bryce, CFA, Demain, AL and Allman, AR (2007) Fermentation Microbiology and Biotechnology, 2nd edn., CRC Taylor & Francis Group, Boca Raton, Florida (ISBN: 0-8493-5334-3)
- Lodish, MR (2001) Bioseperation Engineering, Wiley Interscience, NY (ISBN: 0-471-24476-7)
- SreeKrishna, V. (2007) Bioethics and Biosafety in Biotechnology, New Age International (P) Ltd., Publ., Mumbai (ISBN: 81-224-2085-0)
- Moo-Young, MC (2011) Comprehensive Biotechnology, Vol. I, II & III, Elsevier, ISBN:978-0-08-088504-9
- Goodfrey, T. and Reichelt, JR (1997) Industrial Enzymology, 2nd edn., McMillan Publ. Co., London
- Rhem, HJ, Reed, G, Puhler, A. and Stadler, P. (1997) Biotechnology, 2nd edn., VCH Pub. Germany
- Singh, KC (2004) Intellectual Property Rights on Biotechnology, BCIL, New Delhi
- Stanbury, Peter F.; Whitaker, Allan; Hall, Stephen J. (1994) Principles Of Fermentation Technology . II Edn, Butterworth-Heinemann Publishers
- Okafor Nduka (2007) Modern Industrial Microbiology and Biotechnology, Science Publishers, USA

	MB-402 Applied Molecular Biology	Lectures
Unit I	Tools of molecular biology (or rDNA technology)	10
	• Enzymes: Restriction endonucleases and its types, DNA methylases,	
	DNA polymerase, DNA ligases, Kinases, Phosphatases, topoisomerase	
	• Cloning vectors: Choice and its properties, Bacterial vectors: plasmid,	
	Bacteriophage, Cosmids, Phagmids. Eukaryotic vectors: YACs, Ti,	
	SV40	
	• Cloning hosts: Prokaryotic and eukaryotic hosts: properties	
Unit II	Methods in rDNA technology	10
	 Vector mediated and chromosomal integration 	
	 Cloning from mRNA and genomic DNA 	
	 Screening, analysis and confirmation of rDNA 	
	o Genetic methods	
	 Hybridization techniques – Dot Blot, Colony, Dip stick, Plaque 	
	o Immunochemical methods	
	o Plus and minus screening, HRT and HART	
	 Analysis – Restriction mapping, Blotting techniques, DNA 	
	sequencing	
	o Confirmation by genetic marker and reporter genes	
Unit III	Applications of genetic engineering Microbial Genomics	10
	Concept of - Genome density, GC content, CPG Islands, Isochores,	10
	codon usage bias, cDNAs and ESTs, Contigs	
	• Structural, Functional, Application and Comparative Genomics:	
	o Methods for whole genome sequencing, gene annotation	
	o Gene and SNP identification	
	o Genome mapping (Conjugation, Recombination and	
	complementation) and map integration	
	Microarray technology and its applications in diagnostics	
Unit IV	Protein Engineering and Proteomics	10
	• Protein identification and Expression Mapping: 2D-gel	
	electrophoresis, Mass Spectrophotometry and isotope labelling	
	Protein-ligand docking	
	• Experimental approach to Protein-Protein interaction mapping:	
	 Yeast and Bacterial 2-hybrid systems 	
	o Protein-ligand interactions	
	o Protein fragment complement assays	
	 Protein arrays and chips: Antibody and peptide arrays 	
Unit V	Techniques in Molecular biology	10
	Gene transfer techniques: Electroporation, Microinjection, biolistic	
	DNA Sequencing : Sanger, Maxum Gilbert and high throughput	

- PCR: basics, Reverse transcriptase PCR, Real time PCR, RCAT (Rolling circle amplification technology), Applications of PCR
- Analysis of gene expression : basics, SAGE (Serial analysis of gene expression)
- Ribotyping in microbiology
- SSCP (Single stranded conformation Polymorphism), Denaturing Gradient Gel Electrophoresis (DGGE)

- Channarayappa (2006) Molecular Biotechnology: Principles & Practice, Universities Press (India) Pvt. Ltd, Hyderabad (ISBN: 81-7371-501:7)
- Nicholl, D.S.T. (2002) An Introduction to Genetic Engineering, 2nd edn., Cambridge University Press, Cambridge, UK (ISBN: 81-7596-101-5 paperback)
- Malacinski, G.M. (2003) Essential of Molecular Biology, 4th edn, Jones & Barlett Publishers, Boston (ISBN: 0-7637-2133-6)
- Alcamo, IE (2001) DNA Technology, Academic Press, London, UK (ISBN: 0-12-048920-1)
- Brown, TA (1995) Essential Molecular Biology, Vol. I (A Practical Approach), IRL Press, Oxford
- Primrose, SB and Wardlow, AC (1982) Source Book for Experiments for the Teaching of Microbiology, Academic Press, London (ISBN: 0-12-565680-7)
- Sambrook and Russell Molecular Cloning Vol. I, II and III, CSHL Press, USA
- Weaver, RF (1999) Molecular Biology, WCB McGraw Hill Co., Inc., NY (ISBN: 0-321-0038-2)

	MB-403 Agricultural Microbiology	Lectures
Unit I	Microbial ecology	10
	• Basic concept	
	 Microbial interactions 	
	 Microbial communities and plant protection 	
	Methods to quantitative microbial ecology	
Unit II	Microbial interactions with plant roots	10
	Rhizosphere and its anatomy	
	Mycorrhizae (VAM, OM, EM, Ectomycorrhizae) Plant Grant Participant (PGPP)	
	Plant Growth Promoting Rhizobacteria (PGPR) Started in Complete and American Indiana.	
	Strategies for rhizosphere and mycorrhizae community study Migraphial interaction with parial plant atmosphere.	
	Microbial interaction with aerial plant structurePhylloplane	
	Stems/ flowers, leaf buds	
	 Approaches for studies 	
	Leguminous root nodules	
	Nodulation process	
	• Strategies for study of infection process, root nodulation and nitrogen	
	fixation	
UnitIII	Pathogenic interactions with plants	10
	• Plant defense mechanisms (structural, biochemical, hypersensitive	
	response)	
	 Microbial pathogenicity mechanisms in virus, bacteria, fungal pathogens 	
	Genetic basis of plant-pathogen interactions	
	Region-specific plant diseases (etiology, symptoms and control): Red	
	rot of sugarcane, Sigatoka disease of banana, Banana bunchy top, Tikka	
	disease of groundnut	
Unit IV	Microbial Biocontrol Agents	10
	Strategies for plant disease management	
	 Types of biocontrol agents 	
	 Biological control of post harvest diseases 	
T 7 • . T 7	Control of plant pathogens by genetic engineering	40
Unit V	Microbial production and formulation	10
	BT, Pseudomonas, Trichoderma	
	• Integrated Plant Nutrition through biofertilizers: PSM, S-solublisers,	
	N2fixers	
	Recent approaches in Agriculture microbiology	
	 Microbial Siderophores for fungal phytopathogen suppression 	
	Phytoremediation – Rhizodegradation	
	Rhizosphere engineering	

- Stanier, RY, Ingraham, JL, Wheelis, ML and Painter, PR (1993) General Microbiology, 5th edn., The McMillan Press Ltd., London (ISBN: 0-333-41768-2)
- Atlas, RM ad Bartha, R (1998) Microbial Ecology-Fundamental and Applications, Addison Wesley Longman Inc.
- Lynch and Poole (1984) Microbial Ecology- A Conceptual Approach, Blackwell Scientific Publ.
- Streips, UN and Yasbin, RE (2002) Modern Microbial Genetics, 2nd edn., Wiley-Liss, USA (ISBN: 0-471-38665-0)
- Coyne, MS (2004) Soil Microbiology: An Explanatory Approach, Delmar/Thomson Asia Pvt. Ltd., Singapore (ISBN: 981-240-203-9)
- Kumar, HD and Kumar, S (2004) Modern concepts of Microbiology, 2nd edn., Vikas Publishing House Pvt. Ltd., New Delhi (ISBN: 81-259-1000-X)
- Hurst, CJ, Crawford, RL, Knudsen, GR, McInerey, MJ and Stetzenbach, LD (2002) Manual of Environmental Microbiology, 2nd edn., ASM Press, Washington DC (ISBN: 1-55581-199-X)
- Ciancio, A and Mukerji, KG (2007) General Concepts in Integrated Pest and Disease Management, Springer, The Netherlands (ISBN: 978-1-4020-6060-1)
- Buchnan, BB, Gruissem, W and Jones, RL (2000) Biochemistry and Molecular Biology of Plants, IK International Pvt. Ltd., New Delhi (ISBN:81-88237-11-6)
- Boland, GJ and Kuykendall, LD (1998) Plant-Microbe Interactions and Biological Control, Marcel Dekker Inc., NY, USA (ISBN: 0-8247-0043-0)
- Chincholkar, SB and Mukerjii, KG (2007) Biological Control of Plant Diseases, Haworth Press Inc., London (ISBN: 1-56022-328-6)

	MB-404 Methods in Biotechnology
1	Isolation and estimation of DNA from bacteria/ yeast / fungi / bacteriophage
2	Isolation and estimation of RNA / mRNA from bacteria/ yeast/ fungi
3	Determination of Tm and % (G+C) of DNA
4	DNA fingerprinting through southern blotting
5	Demonstration of DNA amplification by PCR/ RT-PCR
6	Demonstration of GFP marker cloning and expression
7	Fermentative production / biotransformation of antibiotic/ steroid
8	Estimation of penicillin/ streptomycin by microbiological/ chemical assay
9	Analysis of biogas digested slurry for organic C, COD, pectin, lignin, Fatty acids and N
10	Nodulation of legume by Rhizobium using Leonard Jar/ Pot assay
11	Production and detection of siderophore produced by bacteria / fungi
12	Isolation of VAM spores from soil
13	Isolation of microbes from Rhizosphere / Phylloplane

- Sawhney, SK and Singh, R. (2001) Introductory Practical Biochemistry, Narosa Publ. House, Chennai
- Aneja, KR (2005) Experiments in Microbiology, Plant Pathology and Biotechnology, International Publishers, New Delhi (ISBN: 81-224-1494-X)
- Tablot, N. (2005) Molecular and Cellular Biology of Filamentous Fungi, Practical Approach, Indian Edn., Oxford University Press, New Delhi (ISBN: 0-19-567943-1)
- Hewiitt, W (1977) Microbiological Assay, Academic Press, New York
- McMei, B. and Harvey, L. (1986) Fermentations: Practical Approach, IRL Press, Oxford
- Kalaichelvan, PT (2006) Microbiology and Biotechnology: A Laboratory Manual, MJP Publ., Chennai (ISBN: 81-8094-008-X)
- IMTECH Laboratory Manual for Bacterial Genetics, Inslt. Microbuial Technology, Chandigarh
- Cappucino, J and Sherman, N.C. () Microbiology-A Laboratory Manual, The Benjamin-Cummings Publ. Co., Inc.
- Sambrook and Russell Molecular Cloning Vol I, II and III, CSHL Press, USA
- Janarthanan, S. and Vincent, S. (2007) Practical Biotechnology, Universities Press (India)
 Pvt. Ltd., Hydrabad (ISBN: 13-978-81-7371-582-2)
- Schmauder, H.P, Schweizer, M and Schewizer, L.M (2003) Methods in Biotechnology, Taylor and Francis Ltd., London (ISBN: 0-7484-0430-9)
- Davis, L.G., Dibner, MD and Battey, JF (1986) Basic Methods in Molecular Biology, Appleton and Lange, Norwalk (ISBN: 0-8385-0582-1)
- Dubey R. C., Maheshwari D. K. (2005) Practical Microbiology, S.Chand&Co, New Delhi

MB-405 Laboratory course (Project Dissertation)

The project allotted during the Forth semester and it is expected that the students will design experiments and collect experimental data to deduce conclusions. At the end, they will submit a detailed thesis for evaluation. The students should be introduced to research methodology in the beginning through few lectures.

The approach towards the execution of project should be as follows:

- 1. Selection of topic relevant to priority areas of biotechnology.
- 2. Collection of literature from libraries, internet, on-line journals, etc.
- 3. Planning of research experiments
- 4. Performing the experiments with scientific and statistical acceptability.
- 5. Presentation of observations and results.
- 6. Interpretation of results and drawing important conclusions.
- 7. Discussion of obtained results with respect to literature reports.
- 8. Preparation of report (thesis) containing introduction, materials and methods, results and discussion, conclusions, bibliography.
- 9. Presentation of research data in a bound form.