SCIENCE FACULTY

NORTH MAHARASHTRA UNIVERSITY, JALGAON

SYLLABUS FOR

S.Y.B.Sc.

Biotechnology

(With effect from JUNE, 2013)

© 2013 North Maharashtra University, Jalgaon

Page **1** of **7**

North Maharashtra University, Jalgaon Syllabus S. Y. B. Sc. Biotechnology [With effect from June 2013]

- 1. Each theory course has to be completed in 60 lectures in each semester.
- 1. Practical examination of laboratory course shall be conducted annually.
- 2. Each Theory course will be of 50 marks (10 marks internal and 40 marks external examination)
- **3.** Practical course will be of 100 marks (20 marks internal and 80 marks external examination)
- 4. BT YSC [Y for year, S for semester and C for course number].

Theory Courses

FIRST SEMESTER	
BT-211: Cell Biology and Basic Metabolism	BT-212: Molecular Biology
1.1 Cell division and Cell ageing	1.1 Genome organization
1.2 Cell Membrane and Transport	1.2 Replication and Damage
1.3 Biocatalysts	1.3 Transcription and Translation
1.4 Metabolic Pathways	1.4 Regulation of gene regulation

SECOND SEMESTER	
BT-221: Basic techniques for biotechnology	BT-222: Immunology and Bioprocess Technology
2.1 Spectrophotometry	2.1 Immune system and Immunity
2.2 Chromatography	2.2 Antigen and Antibody
2.3 Electrophoresis	2.3 Immunology and Bioprocess Technology

Practical Course (Annual)

Annual	
BT-203 : Practical Course in Biotechnology	

FIRST SEMESTER

BT-211: Cell Biology	and Basic Metabolism
-----------------------------	----------------------

Unit: 1.1	Cell division and Cell death	15L/10 marks
	• Cell cycle process: G1, S, G2 and M Phases.	
	• Regulation of cell cycle and significance	
	Mitosis and Meiosis: significance and comparison	
	• Basic concept of cell apoptosis.	
Unit: 1.2	Cell Membrane and Transport	15L/10 marks
	• Structure and organization of cell membrane	
	Membrane transport: Active and Passive	
	• Membrane models: Bilayer and Danielli-Davson model	
	• Cytoskeletal elements: microtubules, cilia, flagella, & microfilaments	
	• Transport by vesicle formation: Endocytosis and Exocytosis	
Unit: 1.3	Biocatalysts	15L/10 marks
	• Concept and terminologies in enzymology	
	• General properties of enzymes	
	• Enzyme nomenclature and classification with example	
	• Mechanism of enzyme catalysis: Lock and key, Induced fit	
	• Concept of enzyme activity and specific activity	
	• Factors affecting on enzyme activity:	
	Enzyme concentration, Substrate concentration, pH, Temperature,	
	Activators and Inhibitors	
	• Concept of Enzyme Inhibition	
Unit: 1.4	Metabolic Pathways	15L/10 marks
	• Concept of Metabolism: Catabolism and Anabolism	
	• Catabolic pathways, energetics and regulation of:	
	Glycolysis, TCA cycle, Fatty acid degradation: β - oxidation	
	• Anabolic pathways and regulation of:	
	Gluconeogenesis, Glycogenesis.	
	• Protein degradation: Transamination and	
	Deamination	

References:

1. Price.N.C., Stewens Levis;" Fundamentals of Enzymology", 3rd edition

2. Modi.H.A; "Elementory Microbiology", Vol I; Akta Publication, Nadiad

3. Nelson D.L,Cox M.M, "Lehninger's Principles of Biochemistry" CBS Publications, 2000.

4. Pawar.C.B; (1989) "Cell Biology"; Himalaya Pub. House, Mumbai

5. Murray R.K, Granner D.K, Mayes P.A and Rodwell V.W, "Harper's Biochemistry", Appleton and Lange, Stanford, Connecticut.

6. Satyanarayan U, "Biochemistry", Books and Allied (P) ltd, Kolkata.

7. Lohar, P.S. (ISBN 81-8094-027-6) "Cell and Molecular Biology", MJP Publishers Chennai.

7. Rastogi S.C, "Cell Biology", 3 rd edition, New Age International (P) Ltd.

8. Stryer L, "Biochemistry", 4 th edition, W.H.Freeman and Co, New York, USA.

SECOND SEMESTER

BT-221: Basic techniques for Biotechnology.

Unit: 2.1	Spectrophotometry	20L/13marks
	Concept of electromagnetic radiations, Absorption spectrum,	
	Beer-Lambert's law and its limitations.	
	• Basic concept of chromophore and auxochrome.	
	• Principle, instrumentation and applications of UV and visible	
	Spectrophotometry : Single beam, Double beam and Dual	
	Wavelength	
Unit: 2.2	Chromatography	20L/14marks
	• Chromatography: Stationary and mobile phases, Concept of partition	
	coefficient and nature of partition forces.	
	• Principle, Methodology and applications of Paper, Thin layer, Ion	
	exchange, Affinity and Molecular exclusion chromatography	
	• Concept of modern chromatography techniques: HPLC and GC.	
Unit: 2.3	Electrophoresis	20L/13marks
	• Electrophoresis: Concept and Principle, Types : Free & Zonal	
	electrophoresis	
	• Principle, Methodology and applications of: Paper	
	electrophoresis, Agarose gel electrophoresis and SDS PAGE	
	Isoelectric Focusing.	

References :

1) Upadhyay, Upadhyay and Nath (2003) "Biophysical chemistry: Principles and

Techniques", Himalaya Publishing House, Mumbai.

2) Narayanan P, "Essentials of Biophysics", New Age Publishers.

3) Friefelder D, "Physical Biochemistry", 2 nd edition, W.H.Freeman and co.

4) Singh Ayodhya and Singh Ratnesh, "Biophysical Chemistry : Principles and Techniques",

Campus Books, New Delhi.

5)Keith Wilson and Walker John (2000), "Practical Biochemistry: Principles and

Techniques", Cambridge University Press, Low price edition.

FIRST SEMESTER

BT-212: Molecular Biology

Unit: 1.1	Genome organization	15L/10marks
	 Concept of Gene, Genome, Chromosome, Cistron, Muton, Recon, Introns and Exons. Organization of Chromatin, Histone and Non-histone proteins. Nature and Properties of Genetic Code. 	
Unit: 1.2	Prokaryotic DNA replication, Damage and Repair	15L/10marks
	Prokaryotic DNA replication: Enzymes and proteins involved	
	Mechanism of Replication: Initiation, Elongation, synthesis of	
	Leading and lagging strands, Termination.	
	• Mutation concept: types: Spontaneous Mutation and Induced Mutation	
	Mutagens: Physical Mutagens and Chemical Mutagens	
	• DNA repair mechanisms: Photoreactivation and Dark Excision repair	
Unit: 1.3	Transcription and Translation	15L/10marks
	• Transcription: RNA polymerase, Initiation, Elongation and Termination.	
	Inhibitors of transcription.	
	• Translation: Role of Ribosome, Activation of amino acids, Initiation,	
	chain Elongation and termination of translation.	
	Inhibitors of translation	
Unit: 1.4	Regulation of gene regulation	15L/10marks
	Concept of Operon	·
	• Promoter, Operator, Structural and Regulatory genes.	
	Model of Lactose operon: Structure, Positive and Negative regulation	

References :

1) Rastogi S.C.; "Concepts in Molecular Biology", New Age International (P) Ltd, New Delhi.

2) Verma P.S. and Agrawal V.K. (2001), "Concepts in Molecular Biology", S.Chand and Co.Ltd; New Delhi.

3) Pasupuleti Mukesh, "Molecular Biotechnology", MJP (P) Chennai.

4) Powar C.B, "Gene Regulation", Himalaya Book Pvt.Ltd, Mumbai.

5) Lohar P.S. (ISBN 81-8094-027-6) "Cell and Molecular Biology", MJP PublishersChennai.

6) Friefilder D, "Basics of Molecular Biology", Barlett Publications.

7) Strickburger M.W,(1995) "Genetics", Practice hall of India pvt Ltd, new Delhi.

8) Upadhyay Avinash and K.Upadhyay (2005), "Basic Molecular Biology", Himalaya Publishing House, Mumbai.

SECOND SEMESTER

BT-222: Immunology and Bioprocess Technology

Unit: 2.1	Introduction to Immunology	20L/13marks
	• Properties of immune system: Specificity, Diversity, Self v/s	
	non-self-discrimination	
	• Types of immunity: Innate and Acquired.	
	Cellular and Humoral immune responses	
	Primary and Secondary immune response	
Unit: 2.2	Antigen and Antibody	20L/13marks
	• Concept of antigen, Types of antigen, Antigenic determinants,	
	Hapten.	
	• Antigen and Immunogen, antigenicity and Immunogenicity.	
	• Factors affecting antigenicity	
	• Structure, types and functions of Immunoglobulin.	
Unit: 2.3	Basics of Bioprocess Technology	20L/14marks
	Concept and significance of Bioprocess technology	
	Screening : Primary and SecondaryPreservation of industrially important micro-organisms : Storage	
	at reduced temperature and storage in dehydrated form	
	• Culture collection and culture collection Centers.	
	• Concept of Bioreactor and Fermenter.	
	• Design of Fermenter: The key considerations.	
	• Types of fermentation process: Batch and Continuous	
	• Typical fermentation process: Ethanol production.	

References :

1) Singh Bharat, "Immunology", Pointer Pub, Jaipur.

- 2) Yadav .P.R,"Immunology", Dicovery Pub House, New Delhi.
- 3) Coleman.R.M, Lombard.M.F, Sicard.R.E, Rencocca.N.J , "Fundamentals of Immunology",
- W.C.Brown Pub, 1989
- 4) Stanburi.P.F.; Whitakar & Hall.S.J, "Principles of Fermentation Technology", 2nd Edition
- 5) Cassida.L.E. Jr, "Industrial Microbiology", New Age Int Publishers
- 6) Dubey.R.C; Maheshwari.D.K, "A Textbook of Microbiology", S.Chand Publication, New Delhi.
- 7) Patel.A.H; "Industrial Microbiology" Mac.Millon India Limited.
- 8) Dubey.R.C; "A Textbook of Biotechnology", S Chand & Co. Ltd. ,New Delhi.
- 9) I.Kannan (2007), "Immunology", MJP Publishers, Chennai 600005.
- 10) I. Shastri, "Basic Immunology", Himalaya Publications, Nagpur.

BT-203: Practical Course in Biotechnology

	Name of Experiments
1.	Determination of cell size by micrometry (Yeast/Bacterial Cell)
2.	Determination of λ max by using a suitable dye.
3.	Separation of amino acids by paper chromatography.
4.	Separation of sugar / amino acid by thin layer chromatography.
5.	Separation of amino acids by paper electrophoresis.
6.	Study of mitotic cell division by squash method(onion root tip)
7.	Study of meiotic cell division (Triadiscantia buds/Grasshopper testis)
8.	Study of ethanol production by using Saccharomyces cerevisiae.
9.	Spectrophotometric estimation of DNA.
10.	Spectrophotometric estimation of RNA.
11.	Isolation of organic acid producing organism.
12.	Isolation of amylase / protease producing organism.
13.	Determination of enzyme activity of acid / alkaline phosphatase.
14.	Determination of blood group with Rh typing.
15.	Demonstration of various parts of stirred tank reactor.
16.	Demonstration of agarose gel electrophoresis of DNA.
17.	Estimation of Citric acid in fermented broth.
18.	Isolation of mutants by replica plate method.

References :

1) Aneja K.R.(1996) "Experiments in Microbiology, Plant Pathology, Tissue Culture and Mushroom Cultivation", New Age International (P) ltd, New Delhi.

2) Plummer D.T, "An Introduction to Practical Biochemistry, 3 rd edition; Tata McGraw Hill, Delhi.

3) Sadasivam S.and Manikam A(1996) "Biochemical Methods", 2 nd edition New Age International (P) Ltd.New Delhi.

4) Harisha S, "An Introduction to Practical Biotechnology" Laxmi Publication (P) Ltd.new Delhi.
5) J Jayraman "laboratory Manual in Biochemistry" New Age International (P) Ltd.Publishers, New Delhi ,1999.

6) Wilson K. and Walker J,"Practical Biochemistry: Principles and Techniques",(5 th edition), Cambridge Uni. Press, Cambridge

7) Sawhney S.K; Singh Randhir, "Introductory Practical Biochemistry ", Narosa Publishing House, New Delhi.