NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.) Syllabus for Final Year Instrumentation Engineering Faculty of Engineering and Technology

Teachers, Paper Setters and Examiners Guidelines Manual SEMESTER – VII and VIII W.E.F 2015 – 2016

North Maharashtra University, Jalgaon

Cours	s Name of the Course	Crown	Tooshing	- Cahama			Evalua	tion Sch	neme	eme Total		Credits
e Cod	e	Group	Teaching Scheme			The	ory	Pra	Practical			
			Theory	Tutorial	Practical							
			Hrs	Hrs	Hrs	Total	ISE	ESE	ICA	ESE		
			/week	/week	/week							
	Instrumentation In Unit Operations (TH)	D	3	-	-	3	20	80	-	_	100	3
	Biomedical Instrumentation(TH)	D	3	-	-	3	20	80	-	_	100	3
	Interdisciplinary Elective (TH)	Е	3	_	_	3	20	80	_	_	100	3
	Elective – I (TH)	Е	3	_	_	3	20	80	_	_	100	3
	Digital Image Processing (TH)	D	3	_	_	3	20	80	_	_	100	3
	Biomedical Instrumentation (LAB)	D	-	-	2	2	_	-	25	25 (PR)	50	1
	Digital Image Processing (LAB)	D	_	_	2	2	_	_	25	25 (PR)	50	1
	Elective – I (LAB)#	E	_	_	2	2	_	_	25	25 (OR)	50	1
	Project – I (LAB)	D	_	_	2	2	_	_	25	25 (OR)	50	2
	Seminar – II	D	_	-	2	2	_	_	25	-	25	2
	Industrial Visit	D	_	-	-	_	-	_	25	_	25	1
	Total		15	0	10	25	100	400	150	100	750	23
	ISE: Internal Sessional Examinat	tion	ESE: End S	emester I	Examination ICA : Internal Continuous Assessment					nent		
I	nterdisciplinary Elective				Elective -	Ι						
1 P	1Programmable Logic Controller & Distributed Control System1				Industrial Drives and Control							
2 V	'irtual Instrumentation and LABVIEV	N		2	Environmental Instrumentation							
3				3	Fiber Opti	ics & Las	er Instru	mentati	on			
				4	Neural Ne	twork &	Fuzzy Lo	gic Insti	rument	ation		

Syllabus Structure For Final Year Instrumentation Engineering w.e.f year 2015-16(Semester -VII)

lab for Elective – I (LAB)

• Interdisciplinary Elective shall be offered by the department to the students of other departments. Students from one department can not register for Interdisciplinary Elective of the same department.

• At least 15 students should register for offering any elective.

North Maharashtra University, Jalgaon Syllabus Structure For Final Year Instrumentation Engineering w.e.f year 2015-16

Semester -VIII

Course	Name of the Course	Group Teaching Scheme Evaluation Scheme				neme		Total	Credits			
Code	Name of the course	Group				Theory Pra		actical				
			Theory	Tutorial	Practical							
			Hrs	Hrs	Hrs	Total	ISE	ESE	ICA	ESE		
			/week	/week	/week							
	Instrumentation System Design (TH)	D	3	-	-	3	20	80	_	-	100	3
	Industrial Automation (TH)	D	3	_	_	3	20	80	_	_	100	3
	Elective – II (TH)	Е	3	_	_	3	20	80	_	_	100	3
	Elective – III (TH)	Е	3	_	_	3	20	80	_	_	100	3
	Instrumentation System Design (LAB)	D	-	-	2	2	-	_	25	25 (PR)	50	1
	Industrial Automation (LAB)	D	_	_	2	2	_	_	25	25 (PR)	50	1
	Elective – II (LAB)#	Е	_	_	2	2	_	_	25	25 (OR)	50	1
	Industrial Lecture	С	_	_	1*	1	_	_	50	_	50	2
	Project – II	D	_	_	4	4	_	_	75	75(OR)	150	6
	Total		12	0	11	23	80	320	200	150	750	23

	ISE: Internal Sessional Examination ESE: End Sem	ester Exa	amination ICA : Internal Continuous Assessment
	Elective-II		Elective - III
1	Power Plant Instrumentation	1	Optimal & Adaptive Control
2	Computer Network	2	Nano Instrumentation
3	Agricultural Instrumentation	3	Automotive Instrumentation
4	Soft Computing	4	Embedded Systems

lab for Elective – II (LAB)

• * Lectures to be delivered by experts from the industry in alternate weeks. Next week group discussion on the lecture delivered.

• At least 15 students should register for offering any elective.

Instrumentation in Unit Operations

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Unit-I

Sr. No	UNIT-I:	Lecture	References
		required	
А	Introduction: - Concept of unit operations & unit	01	1-5
	processes, material balance and energy balance.		
В	Evaporation: - Liquid characteristics, types of	02	1-5
	evaporators,		
С	Methods of Feeding, operation of single effect and multi	01	1-5
	effect evaporator,		
D	capacity & economy of multiple effect evaporation,	01	1-5
	Vapour recompression,		
Е	Operation of mechanical and thermal Recompression,	01	1-5
F	Instrumentation and control for this process.	01	1-5
	Drying: -		
G	Classification of dryers, Principle & operations, Drying	02	1-5
	equipments, Instrumentation for this process.		
Guidel	ines for the examiners and paper setters:		•
Questio	ns should not be asked on introductory part of syllabus.		

Unit-II

Sr.No.	Unit- II: Distillation	Lecture	References			
		required				
А	Equipment set up	01	1-5			
В	Operation of flash Distillation, Batch Distillation,	02	1-5			
	Continuous Distillation					
С	Fractionating Column	01	1-5			
D	slue plate arrangement	02	1-5			
Е	Rectification and stripping	01	1-5			
F	Instrumentation and control for this process	01	1-5			
G	Leaching and Extraction: - Principles, Various types of	01	1-5			
	equipments for this process.					
Guideli	Guidelines for the examiner and paper setter.					

Questions should not be asked on introductory part of syllabus.

Unit - III

Sr.No	Unit-III: Material Handling Equipments	Lecture required	References
А	Transport Equipments	01	1-5
В	Positioning Equipments	01	1-5
С	Unit load formation Equipment	01	1-5
D	Storage equipment, Identification & control equipment	02	1-5

Е	Size Reduction:-Principle of commutation Equipments	01	1-5			
F	Classification and operation of crushers & grinders	02	1-5			
Guideli	Guidelines for the examiner and paper setter.					
Questio	Questions should not be asked on introductory part of syllabus					

Unit – IV

Sr.No.	Unit – IV: - Crystallization	Lecture	References			
		required				
а	Definition, Magma, Super-saturation	01	1-5			
b	Formation of Crystal, Equipment classification &	02	1-5			
	operation. Instrumentation & control for this process.					
С	Mechanical separation: Screening, Filtration -	02	1-5			
	Mechanisms of filtration					
d	Types of Industrial filters- Rotary filter, filter press	01	1-5			
Е	Centrifuges, cyclones, Bag filter	01	1-5			
F	electrostatic precipitators and Centrifuge separator	01	1-5			
Guideli	Guidelines for the examiner and paper setter.					
Numeri	Numerical may be asked from topic d					

Unit – V

IIL – V		-	
Sr.No	Unit – V:- Heat Exchangers	Lecture	References
		required	
А	Theory	01	1-5
В	Types of heat exchanger	01	1-5
С	temperature pattern in heat exchanger	01	1-5
D	condensers, Boilers, Application of above Unit	02	1-5
	operations in Paper		
Е	Cement, Fertilizer	01	1-5
F	Petrochemical	01	1-5
G	sugar industry	01	1-5
Guideli	nes for the examiner and paper setter.		
Questic	ons should not be asked on introductory part of syllabus.		

Reference Books: -

- 1. McCabe Smith, 'Unit Operation of Chemical Engineering', 5thEdition, McGraw Hill.
- 2. Perry, 'Chemical Engineers Handbook', 6thEdition, McGraw Hill int. Student ed. 1984.
- 3. Felder, Rotsseau, Herriot, 'Elementary principles of Chemical Processes', Wiley 1978
- 4. W.F. Stoeker, 'Design of Thermal System', 3rdEdition McGraw Hill int. ed. 1989.
- 5. M. Gopalrao& M. Sitting, 'Outline of Chemical Technology', 2nd edition east west 1973.

Biomedical Instrumentation

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Unit-I

Sr. No		Lecture	References
		required	
а	Introduction to gross anatomy of human body	01	1-5
b	major physiological systems, their structure and	02	1-5
	function		
С	Cell structure	01	1-5
d	basic cell functions	01	1-5
e	Origin of bio potentials	01	1-5
f	electrical activity of cells	01	1-5
g	Introduction to biomedical instruments	01	1-5
h	classification and justification	01	1-5
Guide	ines for the examiners and paper setters:		
Questic	ons should not be asked on introductory part of syllabus		

Unit-II

Sr. No		Lecture required	References
а	Transducers for biomedical instrumentation and selection	01	1-5
b	biomedical electrodes	01	1-5
с	Cardiological systems: Structure of heart, rhythamicity,	02	1-5
	cardiac cycle, heart sounds, cardiac output		
d	blood pressure measurement, direct, indirect,	02	1-5
	Spygmomanometer		
e	Digital B.P.Cardio vascular instrumentation: ECG	01	1-5
	electrodes, & leads		
f	Cinthoven triangle, ECG quantification, PC based ECG	02	1-5
	analysis		
Guidel	ines for the examiners and paper setters:		
Questio	ns should not be asked on introductory part of syllabus		

Unit-III

Sr. No		Lecture	References
		required	
а	Pacemakers	01	1-5
b	Defibrillators	01	1-5
С	Biotelemetry, bedside monitors	01	1-5
d	ICU, Heart Lang machine	01	1-5
е	Phonocardio graph	01	1-5
f	plentysmograph, Artificial Kidney	02	1-5

g	Blood cell counters	01	1-5
Guidelines for the examiners and paper setters:			
Questic	ons should not be asked on introductory part of syllabus		

Unit-IV

Sr. No		Lecture	References
		required	
а	Central Nervous system: The Brain, Receptors	02	1-5
b	sensory pathway and motor systems,	02	1-5
	Evoked potential		
С	Electron rephalogram, EEG analysis, EMG	02	1-5
d	Mechanics of breathing 02/C02 transport between	01	1-5
	lungs and tissue cells		
e	Spirometer, Artificial respiration	01	1-5
Guide	ines for the examiners and paper setters:		
Questic	ns should not be asked on introductory part of syllabus		

Questions should not be asked on introductory part of syllabus

Unit-V

Sr. No		Lecture	References			
		required				
а	Imaging system: X-ray	01	1-5			
b	CT Scan	01	1-5			
С	Ultrasonography, MRI, Endoscopy	02	1-5			
d	Electrical safety: Significance of electrical danger	01	1-5			
e	Physiological effects of electrical current	01	1-5			
F	Ground shock hazard	01	1-5			
g	methods of accident prevention	01	1-5			
Guide	Guidelines for the examiners and paper setters:					
Questic	Questions should not be asked on introductory part of syllabus					

Reference Books:-

- 1. R S Khandpur, "Handbook of Biomedical Instrumentation, "TMH
- 2. Cromwell, "Biomedical Instrumentation and Measurement, "PHI
- 3. IS G Khalekar, "Introduction to Biomedical instrumentation?"
- 4. Handbook of Biomedical Instrumentation, "Webster".
- 5. <u>http://nptel.iitm.ac.in</u>

Interdisciplinary Elective

I. Programmable Logic Controller & Distributed Control System

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No		Lecture required	Reference
a	Plant Automation	01	1-10
b	Control Systems Strategy	01	1-10
С	Evolution of instrumentation and control	02	1-10
d	Role of automation in industries	01	1-10
e	Benefits of automation	01	1-10
f	Introduction to automation tools PLC, DCS, SCADA, Hybrid DCS/PLC	01	1-10
g	Automation strategy evolution	01	1-10
h	Performance criteria and Safety Systems	01	1-10
	ines for the examiners and paper setters: on should not be asked from introductory part of syllabu	s	

Unit-II

•

Sr.No.		Lecture required	References		
а	Applications of PLC's, Specifications of advanced PLC's, Input speed modules	01	1-10		
В	modular controller, High speed counter, Remote input- output scanner	01	1-10		
с	Communication module, limit switches, scan time, watchdog timer	01	1-10		
d	PLC programmer and its features, programming instructions	01	1-10		
e	input output timer counter, bit comparison FIFO LIFO branch instructions etc.	01	1-10		
f	System configuration hardware, system sizing and selection, wiring diagram, PLC installation, Interfacing to PC, Multi programming languages like ladder diagram	02	1-10		
g	Structured text, Sequential flow chart, Instruction language, Functional block diagram, State diagrams etc	01	1-10		
h	Development of ladder diagram for Industrial applications.	01	1-10		
	Guidelines for the examiners and paper setters: Question should not be asked from introductory part of syllabus				

Unit - III

Sr. No.		Lecture required	References		
а	DCS- Basic Packages Introduction, analog control, direct digital control, distributed process control	01	1-10		
b	DCS configuration with associated accessories, control console equipment	01	1-10		
с	control unit (Relay Rack mounted equipments), local control units, attributes of DCS & DCS Flow sheet symbols	01	1-10		
d	DCS System Integration I/O hardware stations, Set-point station control, Supervisory Computer Tasks & configurations	02	1-10		
е	system integration with PLCs and computers, Human Machine Interface for process monitoring and control	02	1-10		
f	Introduction to expert systems, and Statistical Process Controls	01	1-10		
	Guidelines for the examiners and paper setters: Question should not be asked from introductory part of syllabus				

Unit – IV

Sr.No.		Lecture	References		
		required			
а	Instrumentation Standard Protocols	01	1-10		
b	HART Protocol, frame structure	01	1-10		
С	Programming implementation examples, Benefits, Introduction	01	1-10		
d	Advantages and Limitations of Field bus	01	1-10		
e	FDS configuration, Comparison with other field bus	02	1-10		
	standards including Device net		1 10		
f	Profibus, Controlnet, CAN	01	1-10		
g	Industrial Ethernet, MAP and TOP	01	1-10		
Guideli	Guidelines for the examiners and paper setters:				
Questio	Question should not be asked from introductory part of syllabus				

Unit - V

Sr.No		Lecture	References
		required	
а	Industrial applications of PLC, SCADA, DCS	02	1-10
b	open systems for following plants: Cement plant	02	1-10
С	Thermal power plant, Steel Plant	02	1-10
d	Glass manufacturing plant, Paper and Pulp plant.	02	1-10

Guidelines for the examiners and paper setters: Question should not be asked from introductory part of syllabus

Reference books

- 1. Bela G, LIPTAK "Instruments Engineers Handbook" Vol-II, Process Control 3rd Edition 1995," Chilton
- 2. Popovicand Bhatkar, "Distributed Computer Control for Industrial Automation, Dekker.
- 3. KrishanKant, "Computer-based Industrial Controls" PHI.
- 4. Applications of computers in Process Control, "Considine".
- 5. T.HTsai, "Modern Control Techniques for the Process Industries"
- 6. Lane", Mareeet Dekkar, N.Y 1986.
- 7. Iserman, "Digital Control System,"
- 8. J.D.Otter, " Programmable Logic Controller," (PHI).
- 9. Huges, "Industrial Programmable controller, (ISA).
- 10. <u>http://nptel.iitm.ac.in</u>

Interdisciplinary Elective

ii. Virtual Instrumentation and LABVIEW

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No		Lecture	References
		required	
a	Review of Virtual Instrumentation	01	1-4
b	Historical perspective	01	1-4
С	Need of VI	01	1-4
d	Advantages of VI	01	1-4
e	Define VI	01	1-4
f	block diagram & architecture of VI	01	1-4
g	data flow techniques	01	1-4
h	graphical programming in data flow, comparison with conventional programming	02	1-4
Guide	ines for the examiners and paper setters:	•	

Unit-II

		References
	required	
Programming Techniques	01	1-4
VIS & Sub VIS	01	1-4
loops & charts	01	1-4
arrays, clusters, graphs	02	1-4
case & sequence structures	01	1-4
formula modes	01	1-4
local and global variable	01	1-4
string & file input	01	1-4
	VIS & Sub VIS loops & charts arrays, clusters, graphs case & sequence structures formula modes local and global variable	VIS & Sub VIS01loops & charts01arrays, clusters, graphs02case & sequence structures01formula modes01local and global variable01string & file input01

Questions should not be asked on introductory part of syllabus

Unit - III

Sr.No.		Lecture	References	
		required		
а	Data Acquisition basics	01	1-4	
b	ADC	01	1-4	
С	DAC, DIO	01	1-4	
d	Counters & timers	02	1-4	
е	PC Hardware structure, timing	01	1-4	
f	interrupts, DMA	01	1-4	
g	Software and Hardware Installation	01	1-4	
Guidelines for the examiner and paper setter.				

Questions should not be asked on introductory part of syllabus

Unit – IV

Sr.No.		Lecture	References		
		required			
А	Common Instrument Interfaces for Current loop, , , , ,	01	1-4		
b	Rs232C/Rs 485	01	1-4		
С	GPIB	01	1-4		
d	System basics	01	1-4		
e	interface basics: USB, PCMCIA, VXI, SCXI, PXI etc	01	1-4		
f	networking basics for office & industrial application VISA &IVI	01	1-4		
g	image acquisition & processing	01	1-4		
h	Motion Control	01	1-4		
	Guidelines for the examiner and paper setter. Questions should not be asked on introductory part of syllabus				

Unit - V

Sr.No		Lecture required	References
а	Use of Analysis Tools, Fourier transforms	01	1-4
b	Power spectrum, Correlation methods	01	1-4
С	windowing & flittering	01	1-4
d	Application of VI: Application in Process Control	01	1-4
е	Designing of equipments like Oscilloscope, Digital Millimeter using Lab view Software	01	1-4
f	Study of Data Acquisition & control using Lab view Virtual instrumentation for an Innovative Thermal Conductivity Apparatus to measure the Thermal Conductivity	01	1-4
g	Apparatus- to measure the conductivity of non Newtonian fluids white they are subjected to sharing force.	02	1-4
	ines for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

Reference Books

- 1. Gary Johnson, "Labview Graphical Programming", second edition, MC GrawHill,
- 2. Lisa K. Wells & Jettrey Travis, "Labview for Everyone", Prentice Hall, NewJersey, 1997.
- 3. Sokoloff, "Basic Concepts of Labview 4", Prentice Hall, New Jercy, 1998.
- 4. S. Gupta, J.P.Gupta, "PC interfacing for Data Acquisition & process control",

Second Edition, Instrument Society of America, 1994.

Elective-I I. **Industrial Drives & Control**

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Introduction to motor drives: Classification, comparison of AC and DC drives011-7bBasic elements, torque equations011-7ccomponent of load torque, multi-quadrant operation electronic drives011-7dequivalent drive parameters, components of power electronic drives011-7ecriteria for selection of drive components match between the motor and the load011-7fcalculation of time and energy in transient conditions, characteristics of mechanical systems, stability consideration, thermal consideration021-7gthermal model of motor for heating and cooling, match between the motor and power electronics converter, closed loop control of drives021-7	Sr. No		Lecture	References
of AC and DC drivesbBasic elements, torque equations011-7ccomponent of load torque, multi-quadrant operation011-7dequivalent drive parameters, components of power electronic drives011-7ecriteria for selection of drive components match between the motor and the load011-7fcalculation of time and energy in transient conditions, characteristics of mechanical systems, stability consideration, thermal consideration021-7gthermal model of motor for heating and cooling, match between the motor and power electronics converter,021-7			required	
bBasic elements, torque equations011-7ccomponent of load torque, multi-quadrant operation011-7dequivalent drive parameters, components of power electronic drives011-7ecriteria for selection of drive components match between the motor and the load011-7fcalculation of time and energy in transient conditions, characteristics of mechanical systems, stability consideration, thermal consideration021-7gthermal model of motor for heating and cooling, match between the motor and power electronics converter,021-7	a	Introduction to motor drives: Classification, comparison	01	1-7
ccomponent of load torque, multi-quadrant operation011-7dequivalent drive parameters, components of power electronic drives011-7ecriteria for selection of drive components match between the motor and the load011-7fcalculation of time and energy in transient conditions, characteristics of mechanical systems, stability consideration, thermal consideration021-7gthermal model of motor for heating and cooling, match between the motor and power electronics converter,021-7		of AC and DC drives		
dequivalent drive parameters, components of power electronic drives011-7ecriteria for selection of drive components match between the motor and the load011-7fcalculation of time and energy in transient conditions, characteristics of mechanical systems, stability consideration, thermal consideration021-7gthermal model of motor for heating and cooling, match between the motor and power electronics converter,021-7	b	Basic elements, torque equations	01	1-7
electronic drives1-7ecriteria for selection of drive components match between the motor and the load011-7fcalculation of time and energy in transient conditions, characteristics of mechanical systems, stability consideration, thermal consideration021-7gthermal model of motor for heating and cooling, match between the motor and power electronics converter,021-7	С	component of load torque, multi-quadrant operation	01	1-7
ecriteria for selection of drive components match between the motor and the load011-7fcalculation of time and energy in transient conditions, characteristics of mechanical systems, stability consideration, thermal consideration021-7gthermal model of motor for heating and cooling, match between the motor and power electronics converter,021-7	d	equivalent drive parameters, components of power	01	1-7
between the motor and the load1fcalculation of time and energy in transient conditions, characteristics of mechanical systems, stability consideration, thermal consideration021-7gthermal model of motor for heating and cooling, match between the motor and power electronics converter,021-7		electronic drives		
fcalculation of time and energy in transient conditions, characteristics of mechanical systems, stability consideration, thermal consideration021-7gthermal model of motor for heating and cooling, match between the motor and power electronics converter,021-7	e	criteria for selection of drive components match	01	1-7
characteristics of mechanical systems, stability consideration, thermal consideration02gthermal model of motor for heating and cooling, match between the motor and power electronics converter,02		between the motor and the load		
consideration, thermal consideration02gthermal model of motor for heating and cooling, match between the motor and power electronics converter,02	f	calculation of time and energy in transient conditions,	02	1-7
g thermal model of motor for heating and cooling, match 02 1-7 between the motor and power electronics converter,		characteristics of mechanical systems, stability		
between the motor and power electronics converter,		consideration, thermal consideration		
	g	thermal model of motor for heating and cooling, match	02	1-7
closed loop control of drives		between the motor and power electronics converter,		
		closed loop control of drives		
	Questic	ns should not be asked on introductory part of syllabus.		

Unit-II

Sr.No.		Lecture	References
		required	
а	DC drives System model, motor rating	02	1-7
b	motor mechanism dynamics, drive transfer function	02	1-7
С	effect of armature current waveform	01	1-7
d	torque pulsations	01	1-7
e	adjustable speed drives	01	1-7
f	chopper fed and 1 phase converter fed drives	01	1-7
g	effect of field weakening.	01	1-7
Guideli	nes for the examiner and paper setter.	•	-
Questio	ins should not be asked on introductory part of syllabus		

Questions should not be asked on introductory part of syllabus. Unit - III

Sr.No.		Lecture	References
		required	
а	Induction Motor drives Basic Principle of operation of 3	01	1-7
	Phase motor		
b	equivalent circuit	01	1-7
С	MMF space harmonics due to fundamental current	01	1-7

d	fundamental spatial MMF distributions due to time harmonics simulation, effect of time and space	02	1-7		
	harmonics simulation, enece of time and space				
е	speed control by varying stator frequency and voltage	01	1-7		
F	impact of non-sinusoidal excitation on induction motors,	01	1-7		
	variable square wave VSI drives				
g	Variable frequency CSI drives, line frequency variable	01	1-7		
	voltage drives.				
Guideli	Guidelines for the examiner and paper setter.				
Questic	Questions should not be asked on introductory part of syllabus				

Unit – IV

-			
Sr.No.		Lecture required	References
а	Induction Motor drives Review of induction motor equivalent circuit,	01	1-7
b	effect of voltage, frequency and stator current on performance of the m/c	02	1-7
С	effect of harmonics, slip power recovery schemes-static	02	1-7
d	Kramer drive and dynamic d.q model, small signal model	01	1-7
е	voltage and current fed scalar control, direct and indirect vector control	01	1-7
f	sensor less vector control, direct torque and flux control	01	1-7
	nes for the examiner and paper setter. cal may be asked from topic d		

Unit - V

Sr.No		Lecture	References
		required	
а	Synchronous motor drives: Review of synchronous	01	1-7
	motor fundamental, equivalent circuit, dynamic d-q		
	model		
b	synchronous reluctance, sinusoidal and trapezoidal back	02	1-7
	emf permanent magnet motors		
С	sinusoidal SPM machine drives, trapezoidal SPM	02	1-7
	machines drives		
d	wound field machine drives, switched reluctance motor	01	1-7
	drives		
е	Closed loop control: Motor transfer function-P	01	1-7
f	PI and PID controllers, current control-Design procedure	01	1-7
Guidel	ines for the examiner and paper setter.		
Questi	ons should not be asked on introductory part of syllabus		

Reference Books:

- 1. V. Subramanyam , "Thyristerised Control of Electric Drives", Tata McGraw Hill, New Dehli.
- 2. Dubey, Joshi, Sinha, "Thyristor Power Control", Willey Eastern Publication.
- 3. M. Rashid, "Power Electronics Circuit Devices & Applications", Prentice Hall of India.
- 4. G. K. Dubey , "Fundamentals of Electrical Drives", Narosa Publishing House.
- 5. Mohammad A. El-Sarkawi, "Fundamentals of Electrical Drives", vikas Publishing House.
- 6. Ned Mohan, "Electric Machines and Drives", Wiley India Pvt. Ltd.

Elective-I ii. Environmental Instrumentation

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	Unit-I	Lecture	References		
		required			
а	Environmental Definition, Constituents, biochemical	01	1-6		
	cycle, causes of pollution, types of pollution and their				
	measurements				
b	Effects of pollution, Different sensors for measurement	02	1-6		
	of pollution				
С	difference between off-line Measurement and	02	1-6		
	continuous monitoring				
d	Environmental Toxicology and Hazards, Common toxic	02	1-6		
	agents, their analysis				
e	safety measures, environmental regulations and	02	1-6		
	standards				
Guidel	Guidelines for the examiners and paper setters:				
Questic	ns should not be asked on introductory part of syllabus				

Unit-II

Sr. No		Lecture	References
		required	
a	Review of standard methods of pollution analysis	01	1-6
b	Sampling Operations	02	1-6
С	Devices and techniques as related to environmental	02	1-6
	engineering		
d	Air Pollution Analysis: Analysis of Aerosols and	02	1-6
	Monitoring of gaseous pollutants like SO2, H2S, NO-Nox,		
	CO-CO2, Ozone, NH3 and organic gases, Vapor analysis		
e	Monitoring of suspended particulate matter and trace	02	1-6
	metal pollutants.		
Guide	ines for the examiners and paper setters:		
Questio	ons should not be asked on introductory part of syllabus		

Unit-III

JIIIt-III			
Sr. No		Lecture	References
		required	
а	Water Pollution Analysis Physical Examination - color,	01	1-6
	conductivity, temperature, odor, turbidity, hardness		
b	Chemical Characterization - Ca 2+, Mg2+, Na+, Cl-,SO4	01	1-6
	2+, HCO3-, Al3+, Ba2+Boron, F-, NO2-, PO4 3-, Fe3+		
	Mn2-, SiO2 2-		
С	Biological Investigations – DO, BOD, bacteriological	02	1-6
	examination, and types of water quality monitoring		
	instruments (pH meters, conductivity meters etc.)		

d	Effluent Analysis: Physical Methods of characterization:	02	1-6		
	density, viscosity, temperature, conductivity, turbidity,				
	volatile, and dissolved solids, oil and immiscible liquids,				
	color, odor, radioactivity, and analysis of organic				
	pollutants				
е	BOD, COD, TOC, Specific analysis of Organic pollutants,	02	1-6		
	Analysis of metal pollutants, Analysis of anion and				
	dissolved gases dissolved oxygen, pH, dissolved				
	chlorides, suspended solids, nitrogen, sludge index				
Guide	Guidelines for the examiners and paper setters:				
Questic	ons should not be asked on introductory part of syllabus				

Unit-IV

Sr. No		Lecture	References	
		required		
а	Soil pollution and Pesticide Analysis: Analysis of	02	1-6	
	Micronutrients			
b	trace element pesticides, Chromatographic	02	1-6	
	Characterization			
С	Polarographic and Spectroscope	02	1-6	
d	Analysis of pesticides.	02		
	a.Noise pollution and its Measurement: Units, Devices			
	and maps Noise Control System.			
	b.Radiation pollution and its Measurement and Control.			
Guidelines for the examiners and paper setters:				
Questions should not be asked on introductory part of syllabus				

Unit-V

Sr. No		Lecture	References		
		required			
а	Instrumentation Setup for different types of pollution	02	1-6		
	control like waste water treatment, HVAC Control etc.				
b	Environmental testing	02	1-6		
С	Dry heat, Dry cold, Damp heat, Salt Spray, Dust	02	1-6		
d	Altitude bump, Vibration Drop/Topple, free fall and	02			
	study of ISO 14001				
Guidelines for the examiners and paper setters:					
Questic	Questions should not be asked on introductory part of syllabus				

References:

- 1. S.M. Khopkar, "Environmental Pollution Analysis", 1st Ed. Wiley eastern 1993
- 2. S. M. Khopkar " "Basic Concepts of Analysis Chemistry"
- 3. Peary H.S. and other, "Environmental Engg.,".
- 4. Campbell, "Sensor System for Environmental Monitoring"
- 5. J. A. Nathanson, "Basic Environmental technology (Ed. 1997)".
- 6. Neal K. Ustler, "Environmental tech series, V, I, II, III, IV"

Elective-I Fiber Optics & Laser Instrumentation

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No		Lecture	References
		required	
а	Principles of light propagation through a fiber	01	1-6
b	Different types of fibers and their properties	02	1-6
С	Fiber materials and their characteristics	02	1-6
d	Transmission characteristics of fibers, absorption losses, scattering losses, Dispersion	02	1-6
e	Measurement on optical fibers, Optical sources, Optical detectors	02	1-6
Guide	lines for the examiners and paper setters:	I	
Questic	ons should not be asked on introductory part of syllabus		

Unit-II

Image: sequence of the sequenc	References
bFiber optic sensors02cDifferent types of modulators, Applications in instrumentation02dInter-ferometric method of measurement of length02eMeasurement of pressure, temperature, current, voltage, 0202	
c Different types of modulators, Applications in instrumentation 02 d Inter-ferometric method of measurement of length 02 e Measurement of pressure, temperature, current, voltage, 02	1-6
instrumentation02dInter-ferometric method of measurement of length02eMeasurement of pressure, temperature, current, voltage,02	1-6
dInter-ferometric method of measurement of length02eMeasurement of pressure, temperature, current, voltage,02	1-6
e Measurement of pressure, temperature, current, voltage, 02	
	1-6
liquid level and strain	1-6
iquid level and strain	
Guidelines for the examiners and paper setters:	

Questions should not be asked on introductory part of syllabus

Unit-III

Sr. No		Lecture	References
		required	
а	Fundamental characteristics of laser	01	1-6
b	three level and four level lasers, properties of lasers	01	1-6
С	laser modes- resonator configuration	02	1-6
d	Q switching and mode locking, cavity dumping, types of	02	1-6
	Laser, gas laser		
e	Solid laser, liquid laser, semi conductor laser	02	1-6
Guide	ines for the examiners and paper setters:		
Questic	ns should not be asked on introductory part of syllabus		

Unit-IV

Sr. No		Lecture	References	
		required		
а	Laser for measurement of distance, length, velocity,	01	1-6	
	acceleration, current, voltage, and atmospheric effect ,;			
b	Laser application in Spatial Frequency Filtering	01	1-6	
С	Holography -Basic principle; methods	02	1-6	
d	Holographic interferometry and applications	02	1-6	
е	Holography, for non-destructive testing- Holographic	02	1-6	
	components			
Guidelines for the examiners and paper setters:				
Questions should not be asked on introductory part of syllabus				

Unit-V

Sr. No		Lecture	References		
		required			
а	Applications in Material processing	01	1-6		
b	Laser Welding, Hole drilling	01	1-6		
С	Laser Cutting, Laser Tracking	02	1-6		
d	Medical applications of lasers	02	1-6		
e	laser and tissue interaction, Laser instruments for	02	1-6		
	surgery				
Guidel	Guidelines for the examiners and paper setters:				
Questic	Questions should not be asked on introductory part of syllabus				

Reference Books:

1 I. John and Harry, "Industrial lasers and their Applications", McGraw Hill,

2 John F Ready, "Industrial Applications of Lasers" Academic press, 1978.

3 John Crisp, "Introduction to Fibre Optics", an imprint of Elsevier Science, 1996.

4 Jasprit Singh, "Semi Conductor Optoelectronics", McGraw Hill, 1995.

5. Jeff Hecht, "Understanding Fiber Optics", 5th edition, Prentice Hall publishers

6 A. Selvarajan, S.Kar and T.Srinivas , "Optical Fiber Communication Principles and Systems", TMH

Neural Network & Fuzzy Logic Instrumentation

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Unit-I

Sr. No		Lecture	References
		required	
а	Artificial neural systems, Preliminaries	02	1-7
b	fundamental concepts & models of artificial system	02	1-7
C	neural network learning rules, Hebbian, perceptron, delta Widrow-Hoff learning rules	02	1-7
d	Single layer perception classification: Classification model, features & decision regions training	01	1-7
e	classification using discrete perception, algorithm & examples	01	1-7
f	single layer continuous perceptron networks for linear separable classification	01	1-7
Guide	ines for the examiners and paper setters:		·
Questic	ns should not be asked on introductory part of syllabus		

Unit-II

Sr.No.		Lecture	References		
		required			
а	Multilayer feedback work networks,	01	1-7		
b	Generalized delta learning rule	01	1-7		
С	feed-forward recall	01	1-7		
d	back propagation training learning factors	02	1-7		
e	Single layer feedback networks: basic concepts of	01	1-7		
	dynamical systems mathematical of discrete time				
f	gradient type Hopfield networks	01	1-7		
g	transient response of continuous time solution	02	1-7		
	optimization problems				
Guideli	Guidelines for the examiners and paper setters:				
Questic	ons should not be asked on introductory part of syllabus.				

Unit - III

Sr.No.		Lecture	References
		required	
а	Neural network in control system, Neuro-control	02	1-7
	approaches		
b	training algorithm evaluated training algorithms	02	1-7
	through simulation		
С	self tuning Neuro-control scheme, self tuning PID	02	1-7
	controller		

d	Application of Neuro-control for process control	02	1-7
Guidelines for the examiner and paper setter.			
Questio	ns should not be asked on introductory part of syllabus		

Unit – IV

Sr.No.		Lecture required	References		
a	Introduction of fuzzy control	01	1-7		
b	Introduction fuzzy control form an intuition perspective	01	1-7		
С	mathematical of fuzzy control fuzzy sets	01	1-7		
d	fuzzy relations	01	1-7		
e	approximate resolving representing a set of rules	01	1-7		
f	Non linear fuzzy control: The control problem	01	1-7		
g	FKBC as non linear transfer element PID& duding mode type FKBC	01	1-7		
h	some typical application of fuzzy based control systems	01	1-7		
	Guidelines for the examiner and paper setter. Questions should not be asked on introductory part of syllabus				

Unit - V

	Lecture	D . (
	Lecture	References
	required	
Fuzzy knowledge based controller FKBC design	02	1-6
parameters		
Structure of FKBC fuzzification and Defuzzification	02	1-6
module		
rule based choice of variable and contents of rules	02	1-6
derivation of data based choice of membership function	01	1-6
and scaling factors		
choice of fuzzification and Defuzzification procedure,	01	1-6
Fuzzy-Neuro and Neuro-Fuzzy Controllers		
Guidelines for the examiner and paper setter.		
ons should not be asked on introductory part of syllabus		
	parameters Structure of FKBC fuzzification and Defuzzification module rule based choice of variable and contents of rules derivation of data based choice of membership function and scaling factors choice of fuzzification and Defuzzification procedure, Fuzzy-Neuro and Neuro-Fuzzy Controllers nes for the examiner and paper setter.	Fuzzy knowledge based controller FKBC design parameters02Structure of FKBC fuzzification and Defuzzification module02rule based choice of variable and contents of rules02derivation of data based choice of membership function and scaling factors01choice of fuzzification and Defuzzification procedure, Fuzzy-Neuro and Neuro-Fuzzy Controllers01nes for the examiner and paper setter.01

Reference Books:

- 1. J.M.Zurad, "Introduction of artificial neural systems," Jaico publicationHouse 1997
- 2. S.Iiaykin, "Neural Networks: Comprehensive Foundation," McMillianCollege Publishing company inc. 1994
- 3. S.Omatu, M.Kiialid, R.Yusof, "Neuro Control and its Application, " SpringVerlag London Ltd. 1996.
- 4. D.Driankov, H. Hellendoorn Andm Reinfrank, "An Introduction to Fuzzy Control," Narosa Publication House, 2nd reprint 1997.
- 5. Hagan, Demuth Deak, "Neural Network Design", Thomson Learning.
- 6. Neuro-fuzzy and soft computing, PHI publication
- 7. John Yen, "Fuzzy logic: Intelligence control and Information," Pearsonpublication.

Digital Image Processing

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Unit-I

Sr. No		Lecture	References
		required	
а	Digital Image representation, steps in Image processing	02	1-5
b	Elements of IP system, Frame Grabber, Digital camera	02	1-5
С	Elements of visual perception, Image model	02	1-5
d	Sample and Quantization, Basic relationship between pixels	01	1-5
e	Image Geometry, 2D linear convolution	01	1-5
f	2D Circular Convolution, 2D Correlation	01	1-5
	ines for the examiners and paper setters:		
Ouestie	wa should not be asked on introductory part of cyllobus		

Questions should not be asked on introductory part of syllabus

Unit-II

mit n			
Sr.No.		Lecture	References
		required	
а	Image Transforms	01	1-5
b	Introduction to Fourier Transform	01	1-5
с	2D Discrete Fourier Transform	01	1-5
d	Properties of 2-D Discrete Fourier Transform, FFT,	02	1-5
	Walsh transform		
e	Hadamard Transform, Discrete Cosine transform	01	1-5
f	Harr transform, Slant Transform	01	1-5
g	Hough Transform, Radon Transform, Curvelet	02	1-5
	Transform		
Guideli	nes for the examiners and paper setters:		
Questio	ns should not be asked on introductory part of syllabus.		

Unit - III

Sr.No.		Lecture	References
		required	
а	Image Enhancement methods by Spatial and Frequency	02	1-5
	domain methods, point processing, Spatial filtering,		
	Color Image processing, Image Restoration,		
b	Degradation model, Digitalization of circulant and block	02	1-5
	circulant matrices		
С	Algebraic approach, inverse filtering, Least Mean Square	02	1-5
	filter, constrained Least square restoration		
d	Restoration in spatial domain, geometric	02	1-5
	Transformation		
Guideli	nes for the examiner and paper setter.	-	

Sr.No		Lecture	References
		required	
а	Image Compression by Redundancies	01	1-5
b	Image compression models	01	1-5
С	Elements of Information theory	01	1-5
d	Error-Free compression, Lossy compression	01	1-5
е	compression standards: JPEG & MPEG Image	01	1-5
	Segmentation		
f	Detection of Discontinuities	01	1-5
g	Edge linking and Boundary detection	01	1-5
h	Thresholding, Region oriented segmentation, use of	01	1-5
	motion in segmentation		
Guidelines for the examiner and paper setter.			
Questions should not be asked on introductory part of syllabus			

Unit - V

Sr.No		Lecture	References
		required	
а	Representation and Description Representation	02	1-5
	schemes		
b	Boundary descriptors	02	1-5
С	Regional descriptors	02	1-5
d	Morphology	01	1-5
е	Applications of Image Processing in Instrumentation	01	1-5
	and Control		
Guideli	Guidelines for the examiner and paper setter.		
Questic	ons should not be asked on introductory part of syllabus		

Reference Books:

- 1. R.C.Gonzalez and R.E.Woods, "Digital Image Processing," Addison-WesleyLongman,Inc, 1999.
- 2. A.K.Jain, "Digital Image Processing" Prentice Hall India.
- 3. M.Sonka, V.Hlavac, and R.Boyle, " Image Processing, Analysis and Machine Vision," Thomson Asia pvt. Ltd, 1999.
- 4. Jayaraman, Esakkirajan, Veerakumar, "Digital Image Processing," McGraw Hill.
- 5. S. Shridhar , "Digital Image Processing," Oxford University Press.

Biomedical Instrumentation LAB (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours
5.IN.	Lab Experiment	required
1	Study of different biomedical transducers.	02
2	Study of cardiovascular systems	02
3	Study of ECG machine	02
4	Study of EEG simulator.	02
5	Study of EMG simulator.	02
6	Study of blood sugar meter.	02
7	Measurement of heartbeats using heart beat monitor.	02
8	Measurement of lung capacity using spiro meter.	02
9	Demonstration of defibrillator.	02
10	Measurement of blood pressure by indirect method.	02

Note: Lab file should consist of minimum eight experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student should be asked to perform any one practical. Evaluation will be based on paper work, practical performance and oral in the practical examination.

Sr. No	Lab Experiment	Lecture
	Lub Experiment	required
1	Study of IP Toolbox in Matlab	02
2	Perform Arithmetic & Logical operations on Image	02
3	To study application of Histogram Equalization for image contrast improvement	02
4	To study application of Edge detection in IP for image identification	02
5	Application of FFT to perform operations on image like Convolution, Translation.	02
6	Application of FFT to perform operations on image like Rotation.	02
7	To Study application of Transform, Filtering by applying LPF& Mask for smooth imaging.	02
8	To Study application of Transform, Filtering by applying HPF& Mask for Image shaping.	02
9	Study of IP Toolbox in Matlab	02
10	Perform Arithmetic & Logical operations on Image	02
11	To study application of Histogram Equalization for image contrast improvement	02

Digital Imaging Processing Lab

Teacher should facilitate learning following lab experiments:

Note: Lab file should consist of minimum **eight** experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student should be asked to perform any one practical. Evaluation will be based on paper work, practical performance and oral in the practical examination.

Elective-I Industrial Drives & Control Lab (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours
		required
1	Transfer function of a DC Motor.	02
2	VSI fed three phase induction motor drive.	02
3	Three phase synchronous motor and drive.	02
4	Closed loop control of high frequency of DC – DC converters	02
5	Closed loop control of BLDC motors.	02
6	Closed loop control of Switched reluctance motors.	02
7	Vector control of three phase induction motors.	02
8	Vector control of three phase synchronous motors.	02
9	Closed loop control of PMSM.	02
10	Sensor less control of motors.	02

Note: Lab file should consist of minimum eight experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked questions on practical. Evaluation will be based on answers given by student in oral examination.

Elective-I Environmental Instrumentation Lab (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours required
1	Turbidity of Water Sample by Nephlometric Method	02
		-
2	PH Value of Water	02
3	Total Hardness of Water by EDTA Method	02
4	Suspended Solids in Water	02
5	Alkalinity of Water by Indicator Method	02
6	Coliform Bacteria by Multiple Tubes Fermentation	02
7	Chemical Oxygen Demand in Waste Water by Close Reflux Method	02
8	Bio Chemical Oxygen Demand in Waste Water	02
9	Dissolved Oxygen in Water by Azide Modification Method	02

Note: Lab file should consist of minimum eight experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked questions on practical. Evaluation will be based on answers given by student in oral examination.

Elective-I Fiber Optics & Laser Instrumentation Lab (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours required
1	To study attenuation losses in optical fiber.	02
2	To study dispersion losses in optical fiber.	02
3	To study different splicing techniques.	02
4	To study OTDR.	02
5	To study characteristic curves of optical sources and detectors.	02
6	To measure numerical aperture of an optical fiber.	02
7	To study optical power meter.	02
8	Design of an optical fiber sensor.	02

Note: Lab file should consist of minimum **eight** experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked questions on practical. Evaluation will be based on answers given by student in oral examination.

Elective-I Neural Network & Fuzzy Logic Instrumentation (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours
	Lab Experiment	
1	Write a program to generate the different Membership Functions of	02
1	Fuzzy Logic.	
2	Write a program for addition, difference, product and division of two	02
2	membership functions of Fuzzy Logic Using.	
3	Develop a Fuzzy Interface System for Restaurant Tipping.	02
4	To Perform the Fuzzy Logic Control for Two Inputs.	02
5	Write a program for Single Layer and Multi-Layer Feed Forward Neural	02
5	Network.	
6	To perform Load Forecasting using Artificial Neural Network.	02
7	Write a Matlab program to design Fuzzy Controller for Water Level of	02
/	Tank.	
8	Write a Matlab Program for Neural Controller for CSTR.	02

Note: Lab file should consist of minimum **eight** experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked questions on practical. Evaluation will be based on answers given by student in oral examination.

	(Lab Course Contents)					
1	It is expected that the broad area of Project-I shall be finalized by the student in the					
	beginning of the VII semester / extension of Minor project undertaken may be Project-I.					
2	A group of Minimum 3 and Maximum 5 students shall be allotted for Project-I and same					
	project group for Project-II. Exhaustive survey of literature based on a clear definition of the scope and focus of the					
3						
	topic should be carried out by the students. The Synopsis/Abstract on the selected					
	topic, after detail literature survey should be submitted to the Project coordinator					
	appointed by Head of the department.					
4	Project-I may involve literature survey, problem identification, work methodology					
	preparing specification and material procurement, collection of data , conduction of					
	experiments and analysis. The project work shall involve sufficient work so that					
	students get acquainted with different aspects of fabrication, design or analysis.					
5	Approximately more than 50% work should be completed by the end of VII semester.					
	Each student group is required to maintain log book for documenting various activities					
	of Project-I and submit group project report in the form of thermal bound at the end of					
	semester –VII. Submit the progress report in following format:					
	a. Title					
	b. Abstract					
	c. Introduction					
	d. Problem identification and project objectives					
	e. Literature survey					
	f. Case study/Analysis/Design Methodology					
	g. Work to be completed (Progress status)					
	h. Expected result and conclusion					
	i. References.					
	Evaluation Committee comprising of the Guide, Project Coordinator and Expert					
	appointed by the Head of the department will award the marks based on the work					
	completed by the end of semester and the presentation based on the project work.					

Project-I (Lab Course Contents)

Guide lines for ICA : The Internal Continuous Assessment shall be based on the active participation of the students in the Project work and knowledge / skill acquired. Assessment of the project-I for award of ICA marks shall be done jointly by the guide and departmental committee as per the guidelines given in **Table-A**.

Guide lines for ESE: The End Semester Examination for Project shall consist of demonstration if any, presentation and oral examinations based on the project report.

Assessment of Project-I

	Table-A								
SN	Name of Student	Problem Identification and project objectives	Literature Survey	Project Methodology/ Design/PCB/ hardware/ simulation/ programming	Progress Status	Present ation	Total		
		5	5	5	5	5	25		

	Seminar-I						
1	Each Student shall select a topic for seminar which is not covered in curriculum.						
	Seminar topic should not be repeated and registration of the same shall be done on						
	first come first serve basis.						
2	Topic of Seminar shall be registered within a three weeks from commencement of						
	VII Semester and shall be approved by the committee.						
3	The three-member committee appointed by Head of the department shall be						
	constituted for finalizing the topics of Seminar-II. Seminar shall be related state of the						
	art topic of his choice approved by the committee.						
	a.						
4	Each student should deliver a seminar in scheduled period (Specified in time table or						
	time framed by department) and submit the seminar report (paper bound						
	copy/Thermal bound)in following format:						
	b. Title						
	c. Abstract						
	d. Introduction						
	e. Literature survey f. Concept						
	g. Functional and Technical Details						
	h. Applications						
	i. Comparison with similar topics / methods						
	j. Future scope						
	k. References						

ASSESSMENT OF SEMINAR-II

Guide lines for ICA: ICA shall be based on topic selection , presentation and Seminar-II report submitted by the student in the form of thermal bound. Assessment of the Seminar-II for award of ICA marks shall be done jointly by the guide and a departmental committee, as per the guidelines given in **Table- B**

Name of Guide: _____

	Table-B									
SN	Name of Student	Seminar Topic	Topic Selection	Literature survey	Report writing	Depth of under- standing	Presentation	Total		
			5	5	5	5	5	25		

1	Industry visits for minimum two industries shall be carried out by each student					
	preferably or college shall arrange the industrial visit during the vacation period					
	otherwise during the regular VII semester.					
2	The student should obtain appropriate certificates of visit from the concerned					
	organizations just after the visits.					
3	Every Student should submit Industrial Visit report individually at the end of Semester-VII(First Term of Final Year)					
4	The report(Thermal Bound) should contain information about the following points:					
	a. The organization - activities of organization and administrative setup					
	technical personnel and their main duties.					
	b. The project / industry brief description with sketches and salient technical					
	information.					
	c. The work / processes observed with specification of materials, products,					
	equipments etc. and role of engineers in that organization.					
	d. Suggestions (if any) for improvement in the working of those organizations.					
	The evaluation of the report of technical visits will be made by panel of three teachers					
	appointed by Head of the department based on following points:					

Industrial Visit

Guide lines for ICA : ICA shall be based on knowledge gain by student and Industrial Visit Report submitted by the student in the form of Thermal bound. Assessment of the Industrial Visit for award of ICA marks shall be done jointly by industrial visit coordinators departmental committee based on viva -voce as per the guidelines given in **Table- C**

	Table-C							
SN	Name of Student Name of Report Depth of							
		Industry writing Under-						
				standing				
			15	10	25			

Table-C

NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.) Syllabus for Final Year Instrumentation Engineering Faculty of Engineering and Technology

Teachers, Paper Setters and Examiners Guidelines Manual

SEMESTER -VIII

W.E.F 2015 - 2016

Instrumentation System Design

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Unit-I

Sr. No	UNIT-I:	Lecture	References			
		required				
а	General transducer design consideration	01	1-6			
b	testing of transducer	01	1-6			
С	selection criteria of transducer	01	1-6			
d	Design of temperature measurement system based on	01	1-6			
	RTD					
e	Thermocouple and thermisters	02	1-6			
f	Design of Displacement measurement system based	01	1-6			
	using LVDT					
g	Ultrasonic transducer Complete signal conditioning	01	1-6			
	circuits for above temperature and					
h	Potentiometer Displacement transducers.	01	1-6			
Guideli	Guidelines for the examiners and paper setters:					
Questio	ns should not be asked on introductory part of syllabus					

Unit-II

IIIt-II			
Sr.No.	UNIT-II:	Lecture	References
		required	
а	Design of orifice, rotameter,	01	1-9
b	venture based flow system	01	1-9
С	signal conditioning circuits for above system	01	1-9
d	Design of level sensors and its signal conditioning	02	1-9
	circuits		
e	design of pressure gauge,	01	1-9
f	diaphragm based pressure gauge	01	1-9
g	Load cell and its signal conditioning,	01	1-9
h	study of P/I and I/P converters, Design of smart	01	1-9
	transmitters		
Guideli	nes for the examiners and paper setters:		
Questio	ns should not be asked on introductory part of syllabus		

Unit - III

-				
	Sr.No	Unit-III:	Lecture	References
			required	
	а	Concept of reliability definition,	01	1-9
	b	Distinction between Quality and reliability, failures,	01	1-9
		Availability, Maintainability, (MTBF, MTTF, MTTR)		
	С	Life Cycle and Bathtub curve	01	1-9
	d	Reliability Modeling Exponential, Weibull and Gamma	02	1-9

	Distribution, Hazard rate and Derivation of MTTF Failure Density Function, Cumulative Distribution Function and Reliability				
e	function system Transition Diagrams and Markov Chain modeling concurrent and sequential systems.	01	1-9		
f	Component and Operational Modes. Reliability Prediction	01	1-9		
g	Life Testing and Accelerated Life testing Burn-in and Initial Failure removal.	01	1-9		
	Guidelines for the examiner and paper setter.				

Questions should not be asked on introductory part of syllabus

Unit – IV

Sr.No.	Unit-IV:	Lecture	References		
		required			
а	Guidelines for enclosure:	01	1-9		
b	components and accessories, Grounding and	01	1-9		
С	shielding techniques noise in electronic circuits,	01	1-9		
d	EMI/ EMC protection against EMI,	01	1-9		
e	ESD selection of cables, connectors, types of knobs,;	01	1-9		
f	Mechanical fixture PCB holders, clamps,.	01	1-9		
g	control panel layout ergonomics, types of gear boxes and drives	01	1-9		
h	Ingress protection authorized regulatory bodies for certifying instruments in Hazardous location (BASEEFA, FM, PTB, UL, CESI, LLIE, CSA, DEMKO, IEC &CENELEC).	01	1-9		
Guidelines for the examiners and paper setters: Questions should not be asked on introductory part of syllabus					

Unit - V

Sr.No	Unit-V :	Lecture	References				
		required					
а	Printed circuit board design guidelines	01	1-9				
b	general components layout scheme	01	1-9				
С	grid system, PCB size mechanical stress	01	1-9				
d	design rules for analog	01	1-9				
e	digital circuit PCB, single,	01	1-9				
f	multilayer and SMD boards	01	1-9				
g	Artwork CAD packages, soldering techniques	02	1-9				
Guidel	ines for the examiner and paper setter.						
Questi	ons should not be asked on introductory part of syllabus						

Reference Books:

- 1. Warren Boxleitner, "Electrostatic Discharge and Electronic Equipment, IEEE presse.
- 2. Walter C. Bosshart , "Printed Circuit Boards," CEDT series, TMH.
- 3. Ott, "Noise Reduction Techniques,"
- 4. E. Balguruswamy, "Reliability Engineering,' PHI.
- 5. S. Soclof, "Applications of Analog Integrated Circuit," PHI.
- 6. B. G. Liptak , "Process Control," Chilton.
- 7. National Instruments Catalog.
- 8. E.O. Doebline, "Measurement Systems".
- 9. C. D, Johnson, "Process control and Instrumentation technology," PHI

Industrial Automation

Teachers, Paper setters and Examiners should follow the guidelines as given below. **Unit-I**

Sr. No	UNIT-I: Introduction to Industrial Automation, basics	Lecture	References
	of PLC and Automation strategy.	required	
а	Introduction to Industrial Automation	01	1-6
b	Role of automation industry	01	1-6
С	Programmable Logic Controller	01	1-6
d	Basic operation	01	1-6
e	PLC architecture and components, Programming	02	1-6
	language		
f	PLC application and Manufacturers	01	1-6
g	Introduction to Automation tools like PLC, SCADA, DCS,	01	1-6
	etc.		
h	Hybrid DCS	01	1-6
Guide	ines for the examiners and paper setters:		

Questions should not be asked on introductory part of syllabus

Unit-II

Sr.No.	UNIT-II: Basics PLC Functions and configuration	Lecture	References		
		required			
а	PLC registers, PLC modules	02	1-6		
b	Addressing System	01	1-6		
С	Field Input/ Output system	01	1-6		
d	PLC timers functions	02	1-6		
е	PLC counters	02	1-6		
f	Industrial process Timing application	01	1-6		
g	Selection of PLC and I/O modules	01	1-6		
Guidelines for the examiner and paper setter.					
Questic	ns should not be asked on introductory part of syllabus				

Unit – III

Sr.No	Unit-III: Instructions , Data handling functions	Lecture	References
		required	
а	PLC logical instruction, PLC arithmetic instruction	01	1-6
b	PLC repetitive clock functions, PLC numbering systems,	01	1-6
С	conversion function	01	1-6
d	PLC master relay control function, Jump	02	1-6
е	Data Move instructions	01	1-6
f	other data handling functions	01	1-6

I	g	scaling instructions	01	1-6
ſ	Guideli	nes for the examiner and paper setter.		

Questions should not be asked on introductory part of syllabus

Unit – IV

Sr.No.	Unit-IV: Programming of PLC	Lecture	References
		required	
a	Introduction Ladder/ FBD language,	02	1-6
b	PLC configuration with I/O designations, ,	01	1-6
С	addressing system in programming,	01	1-6
d	Process to develop ladder language in software	01	1-6
e	Uploading/ Downloading the program to/ from PLC,	01	1-6
f	To develop ladder for ON/OFF controlling of motor	01	1-6
g	Traffic signal light	01	1-6
	nes for the examiner and paper setter.		-

Questions should not be asked on introductory part of syllabus

Unit - V

Sr.No	Unit-V : Application of PLC/Industrial application	Lecture	References	
	and Introduction to SCADA system	required		
а	Application development and automation for following	02	1-6	
	industries			
b	Power	01	1-6	
С	Pharmaceutical	01	1-6	
d	Automobile	01	1-6	
е	Rubber industry	01	1-6	
f	Introduction to SCADA system	02	1-6	
Guidelines for the examiner and paper setter.				
Questi	ons should not be asked on introductory part of syllabus			

Reference Books:

- 1. John Webb & Ronald, "PLC Principles and Application", Prentice Hall India.
- 2. S.K.Sigh, "Computer Aided Process Control", Prentice Hall India.
- 3. John Hackworth & Frederick D Hackworth, "PLC: Programming Methods and Applications", Pearson Education.
- 4. Krushnakant, "Computer Based Process Control" Prentice Hall India.
- 5. Prof. Rajesh Mehra and Er. VikramVij, "PLC and SCADA", Laxmi Publication, Delhi
- 6. <u>http://nptel.iitm.ac.in</u>

Power Plant Instrumentation

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Unit-I

Sr. No	UNIT-I:	Lecture	References		
		required			
а	Fundamentals of generation of Electricity	01	1-7		
-b	its transmission and Distribution.	01	1-7		
С	Conceptof regional and national.	01	1-7		
d	power grid	01	1-7		
e	Concept of distance protections and is landing typesof	02	1-7		
	power plant , introduction				
f	comparison of thermal Power plant, ,	01	1-7		
g	Hydro ElectricPower Plant	01	1-7		
h	Nuclear Power Plant, Solar Power Plant.	01	1-7		
Guide	Guidelines for the examiners and paper setters:				
Questic	ns should not be asked on introductory part of syllabus				

Unit-II

Sr.No.	UNIT-II:	Lecture	References
		required	
а	Unit overview, air and fuel path,	01	1-7
b	boiler instrumentation: Combustion control	01	1-7
С	air to fuel ratio control	01	1-7
d	3-element drum level control, steam temperature and pressure	02	1-7
e	control, oxygen/CO2 in flue gases, furnace draft	01	1-7
f	boiler interlocks, Start-up	01	1-7
g	shut-down procedures Boiler load calculation	01	1-7
h	boiler efficiency calculation.	01	1-7
	nes for the examiners and paper setters: ons should not be asked on introductory part of syllabus		-

Sr.No	Unit-III:	Lecture	References
		required	
а	Hydraulically controlled speed governing and.	01	1-7
b	turbine steam inlet control valve actuation system,	01	1-7
	vibration		
С	Condenser vacuum control- gland steam exhaust	01	1-7
	pressure control speed		

d	Shell temperature monitoring-lubricating oil	02	1-7		
	temperature control hydrogen generator.				
e	Start-up and shut-down, thermal stress control,	01	1-7		
f	Condition monitoring and power distribution	01	1-7		
	instrumentation. Synchronous Induction				
g	Generators cooling system.	01	1-7		
Guideli	nes for the examiner and paper setter.				
Questic	Questions should not be asked on introductory part of syllabus				

Unit – IV

Sr.No.	Unit-IV:	Lecture	References
		required	
а	Hydro Power Plant: Overview on units, ,	01	1-7
b	Types of water turbine. Regulation of speed and voltage.	01	1-7
	Surge tank level control.		
С	Nuclear Power Plant: Overview on units	01	1-7
d	Concept of energy generated from atomic fission.	01	1-7
e	Block diagram of an Atomic power station	01	1-7
f	. Types of coolants. Control of chain reaction	01	1-7
g	Radio activity and safety measures. Layout of control	01	1-7
	rooms		
h	Criterion for selection of Instrumentation system DCS	01	1-7
	system for nuclear and hydropower plant		
Guideli	nes for the examiner and paper setter.		
Questic	ns should not be asked on introductory part of syllabus		

Unit - V

Sr.No	Unit-V : Factors Affecting Transient State Stability	Lecture required	References
а	Concept of power generation from non conventional sources of energy like wind power	02	1-7
b	Solar Power and Tidal waves	01	1-7
С	Photovoltaic cells	01	1-7
d	Hydrogen cells	01	1-7
e	Power generation using incinerators and bagasse fired boilers.	01	1-7
f	Criterion for selection of Instrumentation system for	02	1-7

wind and solar and tidal wave plant.	
nes for the examiner and paper setter. ons should not be asked on introductory part of syllabus	

Reference Books:

- 1. "Handbook of Instrumentation and Control", H. Kallen, McGraw-Hill Education.
- 2. "Power plant Engineering", F. Morse, Khanna Publishers.
- 3. "Modern Power Plant Engineering", J. Balasubramaniam and R. Jain, KhannaPublishers.
- 4. "Instrument Engineer's Handbook Process control", B. Liptak, CRC Press.
- 5. "Distributed Computer Control for Industrial Automation", Bhatkar, DekkarPublication
- 6. "Power Plant Engineering", Central Electricity Generation Board.
- 7. "O & M manuals of power plant", Bharat Heavy Electricals Ltd.

Computer Network

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Unit-I

Sr. No	UNIT-I:	Lecture	References
		required	
а	Introduction in Computer Networks and Devices,	01	1-5
	Structure of communication network.		
-b	Point to point and multi-drop circuits, Network	01	1-5
	topologies		
С	Hub, switch, router ,bridges, additional	01	1-5
d	Network components. Network	01	1-5
e	Models. Network software	02	1-5
f	OSI reference model	01	1-5
g	TCP/IP reference model	01	1-5
h	comparison of OSI and TCP/IP model	01	1-5
Guide	ines for the examiners and paper setters:		
Questic	ns should not be asked on introductory part of syllabus		

Unit-II

1111-11			
Sr.No.	UNIT-II:	Lecture	References
		required	
а	Physical Layer: Transmission media, wireless	01	1-5
	transmission		
b	Geostationary communication satellite,	01	1-5
С	modems, RS – 232C serial interface	01	1-5
d	SONET/SDH. Data Link layer	02	1-5
е	Data Link layer design issues	01	1-5
f	Error detection and correction	01	1-5
g	Elementary data link layer protocols	01	1-5
h	Sliding window protocols, SDLC and HDLC	01	1-5
Guideli	nes for the examiners and paper setters:		
Questio	ns should not be asked on introductory part of syllabus		

Sr.No.	Unit-III:	Lecture	References		
		required			
а	Medium Access Sub layers: The Channel allocation	01	1-5		
	problem, multiple access protocols,				
b	Ethernet, Bluetooth, Bridges	01	1-5		
С	High speed LAN's	01	1-5		
d	Network Layer: Need of Network layer	02	1-5		
e	Network layer design issues	01	1-5		
f	routing algorithms	01	1-5		

g	Congestion control algorithms.	01	1-5
Guideli	nes for the examiner and paper setter.		

Questions should not be asked on introductory part of syllabus

Unit – IV

Sr.No.	Unit-IV:	Lecture	References		
		required			
а	Internet Working: Concatenated virtual circuits,	01	1-5		
b	connectionless internetworking, tunneling	01	1-5		
С	Internet work, routing,	01	1-5		
d	fragmentation, and firewalls	01	1-5		
e	Internet and its main applications, Broadband	01	1-5		
f	ISDN and ATM and its reference model	01	1-5		
g	Internet Protocols: IPv4, IPv6, IP address	01	1-5		
h	Internet control protocols – ICMP, ARP,RARP.	01	1-5		
Guideli	Guidelines for the examiner and paper setter.				
Questic	Questions should not be asked on introductory part of syllabus				

Unit - V

Sr.No	Unit-V :	Lecture	References
		required	
а	Transport Layer: Transport service, Elements of	01	1-5
	transport protocols,		
b	The internet transport protocols – UDP, TCP –	01	1-5
	Introduction, Services		
С	TCP segment header, connections, ,	01	1-5
d	Transmission policy and congestion control.	01	1-5
е	Application Layer: DNS – Domain name system	01	1-5
f	Electronic mail	01	1-5
g	World Wide Web, Multimedia	02	1-5
Guidel	ines for the examiner and paper setter.		
Questi	ons should not be asked on introductory part of syllabus		

Reference Books:

- 1. Andrew S. Tanenbaum, "Computer Networks," 4th edition, Pearson LPE / PHI.
- 2. BehrouzForouzan , "Data Communications and Networking," TMH, 4thEd.
- 3. Irvine, "Data Communication and Networks: AnEngg. Approach," Wiley India.
- 4. S. Keshav, "An Engineering Approach to Computer Networking," PearsonEducation, 5thEd.
- 5. Irvine Olifer, "Computer Networks: Principles, Technologies and Protocols," Wiley India

Elective-II

Agricultural Instrumentation

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Unit-I

Sr. No	UNIT-I:	Lecture	References
		required	
а	Introduction: necessity of Instrumentation and control	02	1-4
	for agriculture,		
b	food processing and pharmaceutical industries,	02	1-4
С	Sensor requirement remote sensing biosensors	01	1-4
	inagriculture standards for food quality.		
d	Soil science and sensor: pH conductivity resistively	01	1-4
	temp.		
e	Soil moisture and salinity on concentration	02	1-4
	measurement, methods of soil analysis.		
f	Instruments for environments conditioning of seed	01	1-4
	germination and growth		
Guidel	ines for the examiners and paper setters:		
Questic	ns should not be asked on introductory part of syllabus		

Unit-II

Sr.No.	UNIT-II:	Lecture	References		
		required			
а	Flow Diagram of sugar plant sensors	02	1-4		
b	Instrumentation set up for it	01	1-4		
С	Flow diagram of fermenter and control (batch process)	01	1-4		
d	Oil extraction plant and instrumentation setup,	02	1-4		
e	Pesticides Manufacturing Process and control, a) Flow	01	1-4		
	diagram of dairy and confectionery				
f	industry and instrumentation set up	01	1-4		
g	Juice Extraction control set up.	01	1-4		
Guidel	ines for the examiners and paper setters:				
Questions should not be asked on introductory part of syllabus					

Sr.No.	Unit-III:	Lecture	References	
		required		
а	Application of SCADA for dam parameters and control	01	1-4	
b	Water distributions	01	1-4	
С	management control auto drip irrigation systems	01	1-4	
d	Irrigation Canal Management upstream and downstream	02	1-4	
	control systems			
e	Green houses and Instrumentation	01	1-4	

f	Ventilation cooling and heating wind speed temp.	01	1-4		
g	Humidity rain gauge carbon dioxide enrichment	01	1-4		
	measurement and control.				
Guideli	lelines for the examiner and paper setter.				
Questio	s should not be asked on introductory part of syllabus				

Unit – IV

Sr.No.	Unit-IV:	Lecture	References
		required	
а	Automation in earth moving equipment and	01	1-4
b	farm implements pneumatic hydraulic	01	1-4
С	Electronic control circuits in harvester's cotton pickers	01	1-4
	tractors etc. Application of SCADA		
d	PLC in Packing industry.	01	1-4
e	Leaf area length evapo transpiration temp,	01	1-4
f	Wetness and respiration measurement and data logging	01	1-4
	electromagnetic radiations photosynthesis infrared		
g	UV Bio sensor methods in agriculture	01	1-4
h	Agro meteorological Instrumentation weather stations.	01	1-4
Guideli	nes for the examiner and paper setter.		
Questic	ns should not be asked on introductory part of syllabus		

Unit - V

Sr.No	Unit-V :	Lecture	References
		required	
а	Speciality bioproducts for agricultural, food and	01	1-4
	pharmaceutical industries: Biopesticides, biofertilizers		
	and plant growth factors		
b	Natural bio preservatives (nisin), biopolymers (xanthan	01	1-4
	gum pi single cell protein.		
С	Enzymatic bioconversion processes: Production of	01	1-4
	synthetic penicillin's and cephalosracemically pure drug		
	intermediates		
d	Steroid bioconversion. High-fructose corn syrp.	01	1-4
e	Bioconversion of vegetable	01	1-4
f	Biological waste treatment processes: Objectives of	01	1-4
	biological waste treatment processes		
g	A brief overview of various aerobic and anaerobic	02	1-4
	processes for removal of organic waste.		
Guidel	nes for the examiner and paper setter.		
Questi	ons should not be asked on introductory part of syllabus		

Reference Books:

- 1. Patranabis , "Industrial Instrumentation," ,TMH.
- 2. B.G.Liptak, "Instrumentation handbook-Process Control" Chilton.
- 3. C.D.Johnson, "Process Control and Instrumentation technology,", PHI.
- 4. Wills B.A., "Mineral Processing Technology", 4th Ed., Pergamon Press.

Elective-II Soft Computing

Teachers, Paper setters and Examiners should follow the guidelines as given below.

II.	:+ T
1111	
U 11	

Sr. No	UNIT-I:	Lecture	References		
		required			
а	Fuzzy Set Theory: Basic Definition and Terminology,	01	1-5		
-b	Set Theoretic Operations	01	1-5		
С	MF Formulation and Parameterization,	01	1-5		
d	MF of two dimensions, Fuzzy Union,	01	1-5		
e	Intersection and Complement. Fuzzy Rules	02	1-5		
f	Fuzzy Reasoning: Extension Principles and Fuzzy Relations	01	1-5		
g	Fuzzy IF THEN Rules, Fuzzy Reasoning.	01	1-5		
h	Fuzzy inference systems: Mamdani model- Sugeno model. Tsukamoto model	01	1-5		
Guidel	Guidelines for the examiners and paper setters:				
Questio	ns should not be asked on introductory part of syllabus				

Unit-II

Sr.No	UNIT-II:	Lecture	References		
		required			
а	Fuzzy decision making, Multi objective Decision Making-	02	1-5		
	-Fuzzy classification-				
b	Fuzzy control methods:	02	1-5		
С	Application Neuro-Fuzzy Modeling	02	1-5		
d	Adaptive Neuro Fuzzy based inference systems –	02	1-5		
е	classification and regression trees: decision tress- CART	01	1-5		
	algorithm				
Guidelines for the examiners and paper setters:					
Questions should not be asked on introductory part of syllabus					

Sr.No	Unit-III:	Lecture	References
		required	
а	Data clustering algorithms: K means clustering	01	1-5
b	Fuzzy C means clustering Mountain clustering- Subtractive clustering	01	1-5

С	rule base structure identification	01	1-5	
d	Neuro fuzzy control: Feedback Control Systems	02	1-5	
е	Expert Control- Inverse Learning	01	1-5	
f	Specialized Learning.	01	1-5	
g	Back propagation through Real Time Recurrent	01	1-5	
	Learning			
Guidel	Guidelines for the examiner and paper setter.			
Questi	Questions should not be asked on introductory part of syllabus			

Unit – IV

Sr.No	Unit-IV:	Lecture	References		
		required			
а	Genetic Algorithms: Basic Concepts Creation,	01	1-5		
b	Offspring's Encoding, Fitness functions, Reproduction,	01	1-5		
	Genetic Modeling				
С	Inheritance Operators	01	1-5		
d	, Cross over, Inversion and detection, Mutation operator,	01	1-5		
	Bitwise operators.				
e	Fundamentals of genetic algorithm-Mathematical	01	1-5		
	foundations-Genetic modeling-Survival of the fittest				
f	crossover- Inversion and Deletion-mutation-	01	1-5		
	reproduction- Generational cycle-rank method				
g	rank space method- Other derivative free optimization	01	1-5		
	simulated annealing				
h	Random search- Downhill simplex search	01	1-5		
Guideli	Guidelines for the examiner and paper setter.				
Numer	ical from equal area criteria				

Unit - V

Sr.No	Unit-V :	Lecture	References
		required	
а	Application Applications of Computational Intelligence:	02	1-5
b	Printed Character Recognition	02	1-5
с	Inverse Kinematics Problems	02	1-5
d	Automobile Fuel Efficiency Prediction –	01	1-5
e	Soft Computing for Color Recipe Prediction	01	1-5
Guideli	Guidelines for the examiner and paper setter.		
Questio	ons should not be asked on introductory part of syllabus		

Reference Books:

- 1. J.S.R. Jang, C.T. Sun and E. Mistune, "Neuro-Fuzzy and Soft Computing" PHI/Pearson Education
- 2. S. Rajasekaran & G.A. VijayalakshmiPai, PHI
- 3. T. J. Ross, "Fuzzy Logic with Engineering Applications." TMH
- 4. Laurene Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms and Applications
- ", Pearson Education India, 2006
- 5. S.N. Sivanandam, S.N. Deepa, "Introduction to Genetic Algorithm", Springer 2008

Elective-III Optimal & Adaptive Control

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I:	Lecture	References
		required	
a	Introduction to adaptive control.	01	1-7
b	Effects of process variations	01	1-7
С	Adaptive control schemes	01	1-7
d	Adaptive control problem	01	1-7
e	Non-parametric identification	02	1-7
f	Step response method	01	1-7
g	Impulse response method	01	1-7
h	Frequency response method	01	1-7
Guide	lines for the examiners and paper setters:		

Unit-II

Sr.No.	UNIT-II:	Lecture	References
		required	
а	Linear in parameter models, ARX, ARMAX, ARIMAX,	01	1-7
b	Least square estimation, Recursive least square estimation,	01	1-7
С	Extended least square estimation, Maximum likelihood estimation	01	1-7
d	Introduction to non-linear systems identification, Pseudorandom binary sequence.	02	1-7
e	Self-tuning regulator: Deterministic in-direct self-tuning regulators	01	1-7
f	Deterministic direct self-tuning regulators,	01	1-7
g	Introduction to stochastic self-tuning regulators,	01	1-7
h	Stochastic indirect self-tuning regulator	01	1-7
	nes for the examiners and paper setters: ons should not be asked on introductory part of syllabus		

Sr.No	Unit-III:	Lecture required	References
а	Model reference adaptive controller: The MIT rule, Lyapunov theory,–	01	1-7
b	Design of model reference adaptive controller using MIT rule and Lyapunov theory	01	1-7

С	Relation between model reference adaptive controller	01	1-7		
	and self-tuning regulator				
d	Tuning of controllers and case studies: Design of gain	02	1-7		
	scheduling controller				
е	Auto-tuning of PID regulator	01	1-7		
f	Stability analysis of adaptive controllers	01	1-7		
g	Application of adaptive control in chemical reactor,	01	1-7		
	distillation column and variable area tank system				
Guideli	Guidelines for the examiner and paper setter.				
Questio	Questions should not be asked on introductory part of syllabus				

Unit – IV

$\Pi \mathbf{L} = \mathbf{I} \mathbf{v}$					
Sr.No	Unit-IV:	Lecture	References		
		required			
а	Statement of optimal control problem, Problem, , , ,	2	1-7		
b	formulation and forms of optimal control	2	1-7		
С	Performance measures for optimal control	1	1-7		
d	Selection of performance measure	1	1-7		
e	Various methods of optimization, Linear programming	1	1-7		
f	Non-linear programming, Dynamic programming	1	1-7		
Guideli	Guidelines for the examiner and paper setter.				

Questions should not be asked on introductory part of syllabus

Unit - V

Sr.No	Unit-V :	Lecture	References
		required	
а	Principle of optimality	01	1-7
b	recurrent relation of dynamic programming for optimal control problem	01	1-7
С	Computational procedures for solving optimal control problems	01	1-7
d	Characteristics of dynamic programming solution	01	1-7
e	Hamilton Jacobi Bellman equation	02	1-7
f	Application to a continuous linear regulator problem	02	1-7
	nes for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

Reference Books:

- 1. Adaptive Control, "Karl J. Astrom & Bjorn Wittenmark", Pearson Education (Singapore), Second Edition, 2003.
- 2. System Identification, "C.H.A. Hsia", Lexington books, 1974.
- 3. Chemical Process Control, "Stephanopoulis G", Prentice Hall of India, New Delhi, 1990.
- 4. Optimal Control Theory An introduction, "Donald E. Kirk", Pearson Education, 1970.

- 5. Robust & Optimal Control, "KeminZbou, J.C. Doyle", Pearson Education, 1996.
- 6. Modern Control System Theory, "M. Gopal", New Age International Ltd.
- 7. Control System Design The Optimal Approach, "B. Sarkar", Wheeler Publishing, New Delhi, 1997.

Elective-III Nano Instrumentation

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Sr. No	UNIT-I:	Lecture	References
011110		required	
а	Physical Properties of Nanoscale Structures	01	1-3
-b	Energy subbands and Density of states in nanoscale structure	01	1-3
С	electron transport in a two dimensional electron gas	01	1-3
d	resistance of ballistic conductor,landauer formula	01	1-3
e	transmission probability calculation, electron tunneling	02	1-3
	,resonant tunneling devices, coupled nanoscale		
	structures and super lattices		
f	Columb blockade, Quantization of thermal conductance	01	1-3
	in ballistic nanostructures, non ballistic electron		
	propagation		
g	Nanotechnology: Deposition technique for nanoscale	01	1-3
	devices, nanolithography		
h	self assembly technique Nanomaterials: nanoparticales,	01	1-3
	nanowires, nanomagnetic materials, nanostructered		
	Surfaces		
Guide	lines for the examiners and paper setters:	•	•

Unit-II

C N		T .	D C		
Sr.No.	UNIT-II:	Lecture	References		
		required			
а	MEMS and NEMS: Micro and nanocantilevers,	02	1-3		
b	frequency analysis Micro and nanocantilevers	02	1-3		
с	Quality factor and noise of cantilevers, magnetic	01	1-3		
d	optical actuation of cantilevers Scaning probe	02	1-3		
	Instrumentation for nanoelectronics:				
е	The Atomic force Microscope (AFM),	01	1-3		
h	scanning tunneling Microscopy, scanning near field	01	1-3		
	optical Microscopy				
Guidelines for the examiners and paper setters:					
Questio	Questions should not be asked on introductory part of syllabus				

Sr.No	Unit-III:						Lecture	References
							required	
а	Physical	properties:	band	structure	and	band	01	1-3

	modulation		
b	electrical properties of CNT's	01	1-3
С	CNT based electronic Devices: The CNT Transistor,	01	1-3
d	CNT based field emission Devices junction, hetrojunction	02	1-3
e	quantum confined structure based on carbon nanotube	01	1-3
f	microwave devices based on carbon nano tube	01	1-3
g	CNT based NEMS	01	1-3
Guide	elines for the examiner and paper setter.		-
Ques	tions should not be asked on introductory part of syllabus		

Unit – IV

Sr.No	Unit-IV:	Lecture	References
		required	
а	Physical Principle of Spintronic Devices:	01	1-3
b	Spin relaxation mechanism, spin injection	02	1-3
С	spin detection,	01	1-3
d	Spontaneous Devices: spin filter, spin valve	01	1-3
е	spin pump, spin diode, spin transistor,	01	1-3
f	Spin based optoelectronic devices	01	1-3
g	spintronic computation	01	1-3
Guideli	nes for the examiner and paper setter.	-	-

Questions should not be asked on introductory part of syllabus

Unit - V

Sr.No	Unit-V :	Lecture required	References
а	Design of nanotransducers, nanomechanical elements, nanomechanicalsensors	02	1-3
b	nanometer precision position measurement, electrically controlled nanoactuators	01	1-3
С	chemically driven nanoactuators, quantum dots	01	1-3
d	localjization of elementary Particles,nano switches ,molecular switches, and logic element	01	1-3
е	particle Emitting nanotransducers, magnetic nanotransducers, chemical nanoscale sensors and actuators	01	1-3
f	Optics-optoelectronic devices based on nanowires, optoelectronic devices based on Nanoparticles	02	1-3
	nes for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

Reference Books:

1. Nano electronics: Principles and Devices Mircea Dragoman, Diniela Dragoman, Artech House, Boston (2006)

2. Nanotechnology: An introduction to nano structuring technique Michael Kohler, Wolfgang fritzsche, Wiley –VCH (2007)

3. Handbook of Nanotechnology, Bhusan (Editor) Springer, Berlin Heidelberg New York (2010)

Elective-III Automotive Instrumentation

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Un	it-I
UI	111-1

-		1	n
Sr. No	UNIT-I:	Lecture	References
		required	
а	Fundamentals of Automotive Electronics: Open loop and,	03	1-4
b	closed loop systems components for electronic engine	02	1-4
	management		
С	vehicle motion control	02	1-4
d	Current trends in modern Automobiles	02	1-4
Guidel	ines for the examiners and paper setters:		
Questio	ns should not be asked on introductory part of syllabus		
.:+ II			

Unit-II

Sr.No.	UNIT-II:	Lecture	References
		required	
а	Electronic Fuel Injection and ignition systems:	01	1-4
	Introduction,		
b	Carburettor control system, throttle body ignition	01	1-4
С	multi port or point fuel injection	01	1-4
d	Advantages of electronic ignition system	02	1-4
е	Types of solid state ignition systems	02	1-4
f	their principle of operation	01	1-4
g	electronic spark timing control system	01	1-4
Guideli	nes for the examiners and paper setters:		
Questic	ons should not be asked on introductory part of syllabus		
-			

Sr.No.	Unit-III:	Lecture	References
		required	
а	Engine control system: Engine cranking and warm up	01	1-4
	control,		
b	Acceleration enrichment	01	1-4
	De-acceleration leaning		
С	idle speed control, integrated engine control system	01	1-4
d	Exhauste mission control system	02	1-4
е	Engine performance testing Automobile chassis	01	1-4
	electronic control system: Principle of electronic braking		
f	Automatic transmission electronic control circuit, cruise	01	1-4
	control circuit,		
g	the electronic steering control theory, ABS, ASR, ESP,	01	1-4
	and other electronic control method		

Guidelines for the examiner and paper setter.	
Questions should not be asked on introductory part of syllabus	

Unit – IV

Sr.No.	Unit-IV:	Lecture	References
		required	
а	Auto Body Electronic Control Technology: Automotive	02	1-4
	central locking		
b	anti-theft system control technology	02	1-4
С	electronically controlled windows and doors and airbag	02	1-4
	technology		
d	principle of control circuit components and	02	1-4
	characteristics		
Guideli	nes for the examiner and paper setter.		-
Owertig	and should not be asked on introductory part of gullabus		

Questions should not be asked on introductory part of syllabus

Unit - V

Sr.No	Unit-V :	Lecture required	References
а	Ergonomics and safety: Driver information system, lighting system components	02	1-4
b	Battery monitoring and control,	01	1-4
С	Air conditioning	01	1-4
d	steering control techniques,	01	1-4
e	Automatic gear control systems	01	1-4
f	Emission standards	02	1-4
	nes for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

Reference Book:

.

1. William B. Riddens, "Understanding Automotive Electronics", 5th Edition, (Butterworth Heinemann Woburn), (1998).

2. Tom Weather Jr and Cland C. Hunter, "Automotive Computers and Control System", Prentice Hall Inc. ,New Jeresy.

3. Jiri Marek, Hans Peter trah, "Sensers Applications, Sensers for Automotive Technology" 1st Edition, Wiley

4. T. Mellard, Automotive Electronic Systems" 1987 by Heinenmann Professional

Embedded Systems

Teachers, Paper setters and Examiners should follow the guidelines as given below.

Un	it-l	ſ
U II	IL I	

Sr. No	UNIT-I:	Lecture	References
		required	
а	Introduction to functional building blocks of embedded	02	1-5
	systems,		
b	Register	02	1-5
с	memory devices, ports, timer,	02	1-5
d	interrupt controllers using circuit block diagram	01	1-5
	representation for		
e	each categories	02	1-5
Guide	ines for the examiners and paper setters:		
Augstic	ons should not be asked on introductory part of syllabus		

Questions should not be asked on introductory part of syllabus

Unit-II

Sr.No.	UNIT-II:	Lecture	References
		required	
а	Structural units in a processor	01	1-5
b	selection of processor & memory devices	01	1-5
С	Shared memory	01	1-5
d	DMA	02	1-5
е	interfacing processor	01	1-5
f	memory and I/O units	01	1-5
g	memory management –Cache mapping techniques	01	1-5
h	dynamic allocation - Fragmentation	01	1-5
Guideli	nes for the examiners and paper setters:		
Questic	ons should not be asked on introductory part of syllabus		

Unit - III

Sr.No.	Unit-III:	Lecture	References
		required	
а	I/O devices; timer & counting devices;	01	1-5
b	serial communication using I2C, CAN,	01	1-5
С	USB buses	01	1-5
d	parallel communication using ISA, PCI	02	1-5
е	PCI/X buses, arm bus;,	01	1-5
f	Interfacing with devices/ports	01	1-5
g	Device drivers in a system – Serial port & parallel port.	01	1-5
Guidelines for the examiner and paper setter.			
Questions should not be asked on introductory part of syllabus			

Unit – IV

Sr.No.	Unit-IV:	Lecture required	References	
		-	1 5	
а	Intel I/O instruction: Transfer rate, latency; interrupt	01	1-5	
	driven I/O,			
b	Non maskable interrupts; software interrupts,	01	1-5	
С	writing interrupt service routine in C &assembly	01	1-5	
	languages			
d	Preventing interrupt overrun; disability interrupts.	01	1-5	
е	Multi threaded programming: Context switching,	01	1-5	
	premature & non-premature multitasking, semaphores			
f	Scheduling: Thread states, pending threads	01	1-5	
g	context switching, round robin scheduling,	01	1-5	
h	Priority based scheduling, assigning priorities, deadlock	01	1-5	
	and watch dog timers.			
Guideli	Guidelines for the examiner and paper setter.			
Questic	Questions should not be asked on introductory part of syllabus			

Unit - V

Sr.No	Unit-V :	Lecture required	References
		requireu	
а	Introduction to basic concepts of RTOS,	02	1-5
b	Basics of real time & embedded system operating systems	01	1-5
С	RTOS – Interrupt handling, task scheduling	01	1-5
d	embedded system design issues in system development process, Action plan	01	1-5
e	use of target system, emulator,.	01	1-5
f	use of software tools	02	1-5
	nes for the examiner and paper setter. ons should not be asked on introductory part of syllabus		

Reference Books:

- 1. Embedded System Architecture, Programming, Design, "Rajkamal", TataMcGraw Hill, 2003.
- 2. Fundamentals of Embedded Software, "Daniel W. Lewis", Prentice Hall ofIndia, 2004.
- 3. An Embedded Software Primer, "David E. Simon", Pearson Education, 2004.
- 4. Embedded System Design A Unified hardware & Software Introduction, "Frank Vahid", John Wiley, 2002.
- 5. Embedded Real Time Systems Programming, "Sriram V. Iyer, PankajGupte", Tata McGraw Hill, 2004.

Embedded System Design, "Steve Heath", II edition, Elsevier, 2003

Instrumentation System Design Lab (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours
5.11.		required
1	Design of signal conditioning for displacement measurement	02
1	transducer	
2	Design of signal conditioning RTD (Pt-100)	02
3	Design of signal conditioning for thermocouple	02
4	Study and Calibration of I/P & P/I converter	02
5	Study of D.P. Transmitter and its application for flow	02
6	Study of D.P. Transmitter and its application for level	02
7	Study of smart transmitter	02
8	Design of signal conditioning for load cell.	02
9	Study of Enclosure design for circuit and instrument.	02
10	Design of PCB on above any one signal conditioning application	02

Note: Lab file should consist of minimum eight experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked to perform any one practical. Evaluation will be based on paper work, practical performance and oral in the practical examination.

Industrial Automation Lab (Lab Course Contents)

S.N.	Lab Experiment	Hours
5.IN.		required
1	Study of different PLC and their specification.	02
2	Study of installations and troubleshooting of PLC.	02
3	Solving example by LD and ST programming in PLC.	02
4	Solving example by timer and counter in PLC.	02
5	Solving example using SFC programming in PLC.	02
6	Study of Interfacing between PLC and Process loop.	02
7	Develop a one application on SCADA system.	02
8	Study different type of DCS and their latest trends.	02
9	Selection steps of DCS for industrial automation.	02
10	Study of specification list for DCS	02

Teacher should facilitate learning following lab experiments:

Note: Lab file should consist of minimum **eight** experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

In ESE the student may be asked to perform any one practical. Evaluation will be based on paper work, practical performance and oral in the practical examination.

Elective –II Power Plant Instrumentation Lab (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N. Lab Experiment		Hours
5.11.		
1	Study of instrumentations for Hydro-electric and thermal power	
1	plant.	
2	Study of instrumentations for safety in Nuclear power plants.	02
3	Study of solar power analyzer and wind flow meter for solar and	02
3	wind power plants.	
4	Design and development of interlocks and safety system for	02
4	thermal power plants.	
5	Selection of instrumentation system for thermal power plant.	02
6	Design of boiler automation using DCS and PLC.	02
7	Study on boiler safety instrumentation.	02
8	Study on turbine control system.	02
9	Study on regional and national power grid.	02

Note: Lab file should consist of minimum eight experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

Elective –II Computer Network Lab (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment			
			1	Study of network resources and various components.
2	Use of RS – 232C for character transfer (Half duplex, Full duplex)			
3	Use of RS – 232C for file transfer between two personal computers (Half	02		
3	duplex, Full duplex)			
4	Sliding window protocols using RS 232c.			
5	Interconnection of personal computers and PSTN (Public switching	02		
	Telephone Networks) using MODEMS.			
6	Data transfer and sharing resources in LAN.	02		
7	Study of WAN.	02		
8	Study of various applications like Electronic mail, E- commerce, WWW.	02		

Note: Lab file should consist of minimum **eight** experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

Agricultural Instrumentation Lab (Lab Course Contents)

Teacher should facilitate learning following lab experiments:

S.N.	Lab Experiment	Hours required
1	To test soil PH, conductivity, resistivity, temperature, moisture and	02
1	salinity.	
2	To study instrumentation set-up for Sugar plant.	02
3	To study flow diagram of fermenter and control (Batch process).	02
4	To study pesticides manufacturing process and control.	02
5	To study flow diagram of Diary and confectionary industry and	02
5	instrumentation set-up.	
6	To study juice extraction control set-up.	02
7	To study application of SCADA for DAM and irrigation systems.	02
8	To study automation in farm equipments.	02
9	To study Instrumentation and Control in Green house.	02
10	To study different bio-sensors methods in agriculture	02

Note: Lab file should consist of minimum **eight** experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

Soft Computing Lab (Lab Course Contents)

S.N.	Lab Experiment			
1	Write a MATLAB program to implement discrete hope field network and test for input pattern.	02		
2	Write a MATLAB program to implement full counter propagation network for a given input pattern.	02		
3	Write a MATLAB program to implement back propagation network for a given input pattern.			
4	Write a MATLAB program to implement fuzzy set operation and properties.			
5	Write a program to implement composition of fuzzy and crisp relations.	02		
6	Write a MATLAB program for maximizing $f(x) = x^2$ using genetic algorithm, where x is rangesfrom0 to 31. Perform only 5 iteration.	02		
7	Design Fuzzy Controller for level control of Process Tank.	02		
8	Design Neural Controller for level control of Process Tank.	02		
9	Design Fuzzy Controller for CSTR.	02		
10	Design Neural Controller for CSTR.	02		

Teacher should facilitate learning following lab experiments:

Note: Lab file should consist of minimum eight experiments.

Guide lines for ICA:

ICA shall be based on continuous evaluation of student performance throughout semester and practical assignment submitted by the student in the form of journal.

Guide lines for ESE:-

Industrial Lecture (Course Contents)

1	There is a need to create avenues for a close academia and industry interaction through				
	all the phases of technology development, starting from conceptualization down to				
	commercialization.				
2	List of renowned persons from industry shall be prepared by the committee appointed				
	by Head of the department. After approval from the Principal, Minimum five Industrial				
	lectures in alternate week shall be arranged, which shall be delivered by the				
	experts/Officials from Industries/Govt. organizations/ Private Sectors/Public Sectors /				
	R&D Labs covering the various aspects.				
3	Topics of Industrial Lectures shall be Technical in nature and should not be the specific				
	contents from the curriculum.				
4	Minimum five Lectures to be delivered by experts from the industry in alternate				
	weeks				
5	Students shall submit the report based on minimum five lectures giving summary of the				
	lecture delivered.				
6	The summary should contain brief resume of the expert, brief information of his				
	organization and brief summary of the lecture in bullet point form.				

Guide lines for ICA : Assessment of the Industrial Lecture for award of ICA marks shall be done jointly by departmental committee as per attendance in industrial lecture, report submitted by student and overall performance in semester as per the guidelines given in **Table- D**

	Table-D					
SN	Name of Student	Attendance	Dept of	Report	Total	
		(05 Marks per	Understanding	Writing		
		Lecture)	(03 Marks per			
			Lecture)			
		25	15	10	50	

Table-D

	(Lab Course Contents)				
1	Project-I work decided in VII semester shall be continued as Project-II				
2	Students should complete implementation of ideas given in synopsis/Abstract, so that				
	project work should be completed before end of semester.				
3	Project-II may involve fabrication, design , experimentation , data analysis within				
	realistic constraints such as economic, environmental, social, ethical, health and safety,				
	manufacturability, and sustainability. The stage also includes testing , possible results				
	and report writing				
4	Each students project group is required to maintain log book for documenting various				
	activities of Project-II and submit group project report at the end of Semester-VIII in				
	the form of Hard bound.				
	a. Title				
	b. Abstract				
	c. Introduction				
	d. Problem identification and project objectives				
	e. Literature survey				
	f. Case study/Analysis/Design Methodology				
	g. Project design and implementation details				
	h. Result and conclusion				
	i. Future scope				
	j. references.				

Project-II (Lab Course Contents)

Guide lines for ICA : ICA shall be based on continuous evaluation of students performance throughout semester in project-II and report submitted by the students project group in the form Hard bound. Assessment of the project-II for award of ICA marks shall be done jointly by the guide and departmental committee as per the guidelines given in **Table-D**.

Guide lines for ESE:-

In ESE the student may be asked for demonstration and questions on Project. Evaluation will be based on answers given by students in oral examination.

Assessment of Project-II

Name of the Project: _____

Name of the Guide: _____

Table-D

				rubie b				
		Assessment by Guide (50 Marks)			Assessment by Committee (25 Marks)			
SN	Name of Student	Attendance , Participation and team work	Material procurement/ assembling/De signing/Progra mming	Case study/ Execution	Project Report	Dept of Understan- ding	Presentation	Total
N	larks	10	15	15	10	10	15	75