Kavayitri Bahinabai Chaudhari

NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.)

Third Year Engineering

(Civil Engineering)

Faculty of Science and Technology

'A' Grade NAAC Re-Accredited 3rd Cycle

COURSE OUTLINE

Semester - V

W.E.F. 2020 – 21

Syllabus Structure for Third Year Engineering (Semester – V) (Civil)

							Evalu	ation Sc	heme		
Name of the Course	Group		Teaching	Scheme		Th	eory		cal/Ora l		Credits
		Theory Hrs / week	Tutorial Hrs / week	Practical Hrs / week	Total	ISE	ESE	ICA	ESE	- Total	
PCC CE301: Mechanics of Materials	D	3	-	-	3	40	60	-	-	100	3
PCC CE302: Hydraulic Engineering	D	3	-	-	3	40	60	-	-	100	3
PCC CE304: Geotechnical Engineering	D	3	-	-	3	40	60	-	-	100	3
PEC Professional Elective Course – I	Е	3	-	-	3	40	60	-	-	100	3
OEC Open Elective Course – I	F	3	-	-	3	40	60	-	-	100	3
PCC CE302: Hydraulic Engineering LAB	D	-	-	2	2	-	-	25	25 OR	50	1
PCC CE304: Geotechnical Engineering LAB	D	-	-	2	2	-	-	25	25 OR	50	1
PCC CE203: Disaster preparedness & Planning Management (LAB)	D	-	-	2	2	-	-	25	25 OR	50	1
Minor Project Stage I	G	-	-	6	6	-	-	50	-	50	3
MC III Constitution of India	-	-	-	-	-	-	-	-	-	-	0
	•	15	0	12	27	200	300	125	75	700	21

Professional Elective Course I	Open Elective Course I
Concrete Materials	Air Pollution Control Technology
Airport Planning and Design	Geographical information system
Repair & Rehabilitation of structures	Project management techniques

Syllabus Structure for Third Year Engineering (Semester – VI) (Civil)

		Teaching Scheme				Evaluation Scheme					
						The	eory	Prac	tical/Oral		
Name of the Course	Group	Theory Hrs / week	Tutorial Hrs / week	Practical Hrs / week	Total	ISE	ESE	ICA	ESE	Total	Credits
PCC CE303 Structural Engineering	D	3	-	-	3	40	60	-	-	100	3
PCC CE306: Environmental Engineering	D	3	-	-	3	40	60	-	-	100	3
PCC CE307 Transportation Engineering	D	3	-	-	3	40	60	-	-	100	3
PEC Professional Elective course II	E	3	-	-	3	40	60	-	-	100	3
OEC Open Elective Course II	F	3	-	-	3	40	60	-	-	100	3
PCC CE 303 Structural Engineering Lab	D	-	-	2	2	-	-	25	25 OR	50	1
PCC CE 306 Environmental Engineering Lab	D	-	-	2	2	-	-	25	25 OR	50	1
PCC CE 307 Transportation Engineering Lab	D	-	-	2	2	-	-	25	-	25	1
Minor Project	G	-	-	6	6	-	-	50	25 OR	75	3
Internship	н	-	-	-	-	-	-	-	-	-	-
		15		12	27				75	700	21

Professional Elective Course II	Open Elective Course II
Building construction practice	Intelligent transportation system
Railway Engineering	Smart city planning
Construction Equipments and Automation	Numerical methods of analysis

		Mechanics of	Materials					
		COURSE O	UTLINE					
Course	arse Mechanics of Materials Short MoM Con							
Title:			Title:		Code:			
Course d	escription:							
structures Methods	by the previous course . With emphasis on the included are moment The course also includes	e analysis of sta area method to	tically indet calculate	terminate be slope and	eams and rigit deflection, an	d frames		
Lecture	Hours/week	No. of	Total hou	Irs	Semester cr	edits		
		weeks						
	03	14	42		04			
Prerequi	site course(s):	I	1		<u> </u>			
Nil								

Course objectives:

The objective of this course subject is to enable a student to analyze statically determinate and indeterminate structures such as beams and arches subjected to external loads. The student should get knowledge of different analytical tools for understanding the behaviour of statically determinate and indeterminate structures. The student should know computation of deflections, internal axial forces, shear forces, and bending moments in beams, frames and arches. The student should be able to deal with the methods necessary for analyzing various types of structures such as fixed beam, continuous beams and frames. Student should also know the fundamental concepts of flexibility and stiffness method of structural analysis, and influence line diagram including identification of positions of load for maximum shear force and bending

moments at specified sections

Course outcomes:

After successful completion of this course the student will be able to:

- To know basic concepts and principles for analysis of indeterminate structures and to understand the principles of strain energy and deflection of structures.
- To be able to analyse structures for moving loads; to be able to identify the most critical combination of load train.
- To be able to analyze fixed and continuous beams.
- To be able to analyze beams and frames using slope deflection method.
- To be able to analyze beams, sway and non sway frames with stiffness and flexibility method.

		COURS	SE CONTENT				
Mechanics of Materials		Semester:		V			
Teaching Scheme:		Examination s	cheme	I			
Lectures:	3 hours/week		End semester	60 marks			
		Duration of ESE:			03 hours		
			Internal Sessio	onal Exa	ms (ISE):	40 marks	
Unit–I:		No. of Lect	tures: 09 Hours Marks:		Marks: 12	12	
Strain Energy: Castigli	ano's fir	st theorem an	d its application	to find slo	ope & deflectio	on of simple	
beams and frames.							
Deflection of trusses: d	eflection	n of statically	determinate plain	n trusses l	by Castigliano'	s theorem.	
Analysis of redundant	trusses	by Castiglian	no's second the	orem. La	ck of fit and	temperature	
changes in members, si	nking of	f support.(deg	ree of indetermir	nacy up to	o two only).		
Unit–II:		No. of Lect	ures: 09 Hours		Marks: 12		
Influence lines and moving loads: Basic concepts, influence line for reactions, B.M. & S.F. for							
simply supported, overhanging beams, Calculations for S.F. & B.M. in beam using influence							

lines.

Moving Load: Introduction to moving loads, conditions for maximum B.M. and maximum S.F. at a section due to moving point loads, uniformly distributed load, longer or shorter than span and train of moving loads, Absolute maximum B.M. & S.F., Construction of Max. S. F. and B.M. diagram.

Unit-III:	No. of Lectures: 08 Hours	Marks: 12					
Fixed Beams: Concept, advantages and disadvantages, Nature of B.M. Diagrams, Fixed end							
moment due to various types of	of loads such as point, uniform	nly distributed, Uniformly varying,					
couples for beams, Effect of sir	king of support, plotting of B.	M. & S.F. diagrams.					
Continuous Beams: Analysis of	f continuous beam by three mo	ments (Clapyeron's theorem) up to					
three unknowns, Effect of sinki	ng of supports, plotting of B.M	1. & S.F. diagrams.					
Unit-IV:	No. of Lectures: 08 Hours	Marks: 12					
Analysis of beams and frames	(Sway and non – sway frames)) using slope & deflection methods.					
Numerical problems on analys	is of shape factor. Numerical	problems on portal frame method					
and cantilever frame method.							
Unit–V:	No. of Lectures: 08 Hours	Marks: 12					
Fundamental concept of flex	ibility method of analysis: f	formulation of flexibility method,					
Problem on continuous beams a	and frames (Sway and non – sw	vay).					
Fundamental concept of stiffness method of analysis: formulation of flexibility method, Problem							
Fundamental concept of stime	ss method of analysis: formula	ation of flexibility method, Problem					
on continuous beams and frame		ation of flexibility method, Problem					
-		ation of flexibility method, Problem					
-		ation of flexibility method, Problem					
on continuous beams and frame	es (Sway and non – sway).	- 					
on continuous beams and frame Text Books: 1. Structural analysis Vol –I, II	es (Sway and non – sway). by S.S. Bhavikatti, Vikas Pub						
on continuous beams and frame Text Books: 1. Structural analysis Vol –I, II	es (Sway and non – sway). by S.S. Bhavikatti, Vikas Pub	lishing House Pvt. Ltd.					
on continuous beams and frame Text Books: 1. Structural analysis Vol –I, II 2. Mechanics of structures Vol	es (Sway and non – sway). by S.S. Bhavikatti, Vikas Pub	lishing House Pvt. Ltd.					
on continuous beams and frame Text Books: 1. Structural analysis Vol –I, II 2. Mechanics of structures Vol	es (Sway and non – sway). by S.S. Bhavikatti, Vikas Pub	lishing House Pvt. Ltd.					

Khanna Publications.

- 2. Theory of structures by S. Rammamrutham, Dhanpatrai Publishing Company.
- 3. Basic structural analysis by C.S.Reddy
- 4. Punmia B. C. Theory of Structure, Laxmi Publication.
- 5. Pandit& Gupta -Structural Analysis, TataMcGrawHill, Pub. Co.Ltd ., New Delhi
- 6. Wang C.K.-Intermediate structural analysis, McGraw Hill, New York.

]	Hydraulic Enginee	ring				
			COURSE OUTLI	NE				
Course	rse Hydraulic Engineering Short HDE Course							
Title:				Title:		Code:		
Course	descripti	on:						
The cour	rse is an a	dvance course in fl	uid mechanics. It fo	ocuses on	application	ns of fluid m	nechanic	
in civil e	engineerii	ng. The principal fl	uid used is water.	The cours	e includes	s boundary l	layer and	
fluid flov	w around	submerged bodies,	Analysis of turbul	ent flow i	n pipes an	d pipe flow	systems	
Analysis	of open of	channel flows and S	Study of Hydraulic	Furbines a	and centrif	ugal pump.		
Lecture		Hours/week	No. of weeks	Total l	nours	Semester	r credits	
		3	14	42		3		
Prerequ	isite cou	rse(s):						
Nil								
Course	objective	s:						
To intr	oduce the	e students to vario	us advanced hydra	ulic engir	eering pr	oblems like	open	
channel	l flows, la	minar and turbulen	t flows, flow through	gh pipes, I	losses etc.	The student	t must	
have kr	nowledge	of hydraulic maching	ines like pumps and	d turbines	that are c	commonly us	sed in	
civil en	gineering	g. At the completio	n of the course, the	e student	should be	able to rela	te the	
theory a	and practi	ce of problems in h	ydraulic engineerin	g.				
Comme	outcomes	3:						
Course	f.1 .	ompletion of this co	ourse the student wi	ll be able	to:			
	ccessiul c							
After suc		nt must have knowle	edge of laminar and	turbulent	flow anal	ysis.		
After suc	The studer		edge of laminar and nalyze flow through			-		

		COURS	E CONTENT				
			Semester:	V			
Teaching Scheme:			Examination scheme				
Lectures:	3 hour	s/week	End semester e	60 marks			
			Duration of ES	03 hours			
			Internal Session	nal Exams (ISE):	40 marks		
Unit–	-I: No. of Lectu		tures: 09 Hours	res: 09 Hours Marks:			

Laminar Flow- Laminar flow through pipes – Hagen-Poiseuilli's equation, Stoke's law, Measurement of viscosity.

Turbulent Flow- Reynolds experiment, Transition from laminar to turbulent flow. Turbulence phenomenon, scale and intensity Causes of turbulence Reynolds stresses, , Prandtl's mixing length theory, universal velocity distribution equation(No derivation of velocity distribution equation), Darcy-Weisbach equation (no derivation)Hydrodynamically smooth and rough boundaries. Resistance to flow of fluid in smooth and rough pipes, Moody's diagram.

Flow through Pipes: Loss of head through pipes, Darcy-Wiesbatch equation, minor losses, total energy equation, hydraulic gradient line, Pipes in series, equivalent pipes, pipes in parallel, siphon.

Unit–II:	No. of Lectures: 09 Hours	Marks: 12					
Boundary Layer Analysis-Assumption and concept of boundary layer theory. Boundary-layer							
thickness, displacement, momentum & energy thickness, laminar and Turbulent boundary							
layers on a flat plate; Laminar sub-layer, Local and average friction coefficients. Separation							
and Control.							

Fluid flow around submerged bodies: Practical problems involving fluid flow around submerged objects, definitions and expressions of drag and lift, drag and lift coefficients, types of drag, drag on cylinder .Circulation, Magnus effect, lift on cylinder and airfoil, polar diagram.

Unit-III:	No. of Lectures: 08 Hours	Marks: 12				
Introduction to Open Channel Flow- open channel flow, geometrical parameters of a channel,						

classification of open channels, classification of open channel flow

Uniform Flow-Continuity Equation, Energy Equation and Momentum Equation, Characteristics of uniform flow, Chezy's formula, Manning's formula. Factors affecting Manning's Roughness Coefficient "n .*Most economical section of channel* for rectangular, triangular, circular and trapezoidal sections. Normal depth.

Unit–IV:	No. of Lectures: 08 Hours	Marks: 12

Non-Uniform Flow- Specific energy, Specific energy curve, critical flow,Specific force and Critical depth. Measurement of Discharge and Velocity – Venturi Flume,Measurement of Velocity- Current meter, Floats.

Gradually Varied Flow-Dynamic Equation of Gradually Varied Flow, Classification of channel bottom slopes, Classification of surface profile, Characteristics of surface profile. Computation of water surface profile by graphical, numerical and analytical approaches. Direct Step method, Graphical Integration method and Direct integration method.(No mathematical Treatment for methods of computation of water surface profile)

Hydraulic Jump- Theory of hydraulic jump, Elements and characteristics of hydraulic jump, length and height of jump, Types, applications of hydraulic jump. Energy dissipation and other uses.

Unit–V:	No. of Lectures: 08 Hours	Marks: 12

Hydraulic Turbines :Elements of hydro electric power plant, unit & specific quantities, Classification of hydraulic turbines, introduction to work done, head and efficiencies of turbines(mathematical treatment only for Pelton Wheel turbines)

Centrifugal Pumps: Classification of centrifugal pump, specific speed, priming, and introduction to work done by impeller, head and efficiencies, Characteristic curves of hydraulic turbines and centrifugal pumps.

Text Books:

A Textbook of Fluid Mechanics and hydraulic machines by Dr R. K. Bansal, Laxmi Publication

Fluid Mechanics and fluid power engineering by D S Kumar S K Kataria Publications.

Reference Books:

Fluid Mechanics – Dr. A. K. Jain, Khanna publisher, Delhi Flow in open Channels –Dr. K. Subramanya, Tata Mcgraw-Hill education Pvt. Ltd., New Delhi Hydraulic Machines- Dr. Jagdish Lal, Metropolitan Book Co. Pvt. Ltd., New Delhi Hydraulic Machines- Dr. R. K. Rajput

GEOTECHNICAL ENGINEERING COURSE OUTLINE Course GEOTECHNICAL ENGINEERING Short GTE Course Title: Title: Code: **Course description:** This course includes importance, applications and scope of soil mechanics and foundation engineering. It describes soil as a three phase system. It describes the basic engineering properties of soil and soil classification system. It describes the behavior of soil under various types of loadings and concept of bearing capacity. It also describes types of foundations including shallow as well as deep foundations and their design approaches. Hours/week Lecture No. of weeks Total hours Semester credits 03 3 12 36 **Prerequisite** course(s): Nil **Course objectives:** 1. Know the basic principles of soil mechanics, soil properties, relationship between soil properties. 2. Understand the soil classification system 3. Investigate the soil in laboratories and field. 4. Estimate bearing capacity of soil. 5. Understand behavior of soil subjected to loads and water content. 6. Understand types of foundation and their performance. 7. To design the different types of foundations.

Course outcomes:

After successful completion of this course the student will be able to:

- 1. To introduce the students with subjects of soil mechanics, basic terms, properties and relationship between them and methods of soil investigations.
- 2. To appraise the student with soil classification systems.
- 3. To appraise students about soil compaction and consolidation of soils and mathematical treatment.
- 4. To introduce the students with effective stress and describe shear strength of soil, types of shear tests, principal stresses and relation between them.

		COURSE	CONTENT		
Name of the Sub	ject: Geotech	nical	Semester:	V	
Teaching Schem	e:		Examination scl	heme	
Lectures:	3 hour	s/week	End semester ex	60 marks	
	I				03 hours
					40 marks
Unit–	[:	No. of Lectu	res: 08 Hours	Marks: 12	

5. To analyze and design different types of foundations

Relationships-Soil as three-phase system in terms of weight, volume, etc, Definitions: moisture content, unit weights, degree of saturation, voids ratio, porosity, specific gravity, mass specific gravity, etc. Relationship between volume weight, voids ratio- moisture content, unit weight-percent air voids, saturation- moisture content, moisture content- specific gravity etc. Determination of various parameters such as: Moisture content, Specific gravity & Unit weight. *Plasticity Characteristics of Soil* - Introduction to definitions of: plasticity of soil, consistency limits-liquid limit, plastic limit, shrinkage limit, plasticity, liquidity and consistency indices, flow & toughness indices, definitions of activity and sensitivity. Determination of Atterberg's limits.

Introduction-Types of soils, their formation, Scope of soil engineering, Basic Definitions and

Unit–II:	No. of Lectures: 08 Hours	Marks: 12			
Permeability of Soil - Darcy's law, Determination of coefficient of permeability: Laboratory					
method: constant-head method,	falling-head method. Field meth	nod: pumping- in test, pumping-			

out test. Permeability aspects: permeability of stratified soils, factors affecting permeability of soil.

Effective Stress Principle - Introduction, nature of effective stress, effect of water table, effective stress in soils, quick sand condition.

Compaction of Soil-Introduction, theory of compaction, laboratory determination of optimum moisture content and maximum dry density.

Consolidation of Soil - Introduction, comparison between compaction and consolidation, initial, primary & secondary consolidation, spring analogy for primary consolidation, interpretation of consolidation test results, Terzaghi's theory of consolidation, final settlement of soil deposits, computation of consolidation settlement and secondary consolidation.

	Unit–III: N		No. of Lectures: 08 Hours			Marks: 12							
a .	•	•1	τ.	1			1		• / 1	1	тс		

Stresses in soils – Introduction, stresses due to point load, Influence factors, Isobars, Boussinesq's equation, Newmark's Influence Chart.

Shear Strength - Mohr circle and its characteristics, Mohr-Coulomb theory, types of shear tests: direct shear test, merits of direct shear test, triaxial compression tests, test behaviour of UU, CU and CD tests,

Stability of Slopes - Introduction, types of slopes and their failure mechanisms, factor of safety, analysis of finite and infinite slopes, wedge failure Swedish circle method.

Introduction to Earth Pressure: Introduction, Rankine's state of Plastic Equilibrium in soils, Active and Passive states due to wall movement, Earth Pressure at rest.

Unit–IV:	No. of Lectures: 08 Hours	Marks: 12

Soil Exploration- Introduction, methods of site exploration and soil investigation, advance soil exploration methods.

Foundation Engineering: Introduction, types of Foundations, Bearing Capacity of Foundations, definitions: Ultimate Bearing Capacity, Gross Bearing Capacity, Net and Safe Bearing Pressures,

Allowable Soil Pressure, Shallow Foundation- Introduction, types of Shallow foundation, types of Shear Failure, Load-Settlement Curve, Terzaghi's Bearing Capacity Analysis, Minimum depth of foundation, elastic settlement and analysis, Contact pressure, pressure bulb, Total and Differential Settlement.

Unit–V:	No. of Lectures: 08 Hours	Marks: 12

Deep Foundation: Introduction, Pile Foundation-Introduction, necessity, Classification, Pile capacity analysis based on Static and Dynamic methods, Pile Load Test as per IS:2911 specifications, Negative Skin Friction, Pile Groups, Ultimate Load Capacity of Groups.

Piers and Cassions: Types of Piers, Methods of Installation, Cassions and Foundation Walls, Open, Box and Pneumatic Cassions, Sinking Method, Cassion Disease, Well Foundation, Sheet Piles and cofferdams

Text Books:

- 1. Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering (Civil and Environmental Engineering) by V.N.S. Murthy
- 2. Soil Mechanics And Foundation Engineering by P N Modi.
- 3. Dr. B.C.Punmia, Soil Mechanics and Foundation Engineering, Laxmi Publications,

Reference Books:

- 1. Gulhati and Datta , GeoTechnical Engineering, Tata McGraw Hill.
- Dr. Alam Singh, Soil Engineering in Theory and Practice (Vol. -1), CBS Publication, Delhi.
- Dr. Alam Singh, Modern Geotechnical Engineering & Foundation, CBS Publication, Delhi.
- 4. Ramamurthy T.N. and Sitharam T.G., GeoTechnical Engineering,
- 5. Venkatramaiah C., Geotechnical Engineering,
- 6. V. N. S. Murthy, Soil Mechanics and Foundation Engineering, Saitech Publications.
- 7. K. R. Arora, Soil Mechanics and Foundation Engineering, Standard Publishers and Distributors, New Delhi.
- 8. Taylor, D. W., Fundamentals of Soil Engineering, John Wiley & Sons

9. K. Terzaghi, Soil Mechanics in Engg. Pracice, John Wiley & Sons

10. Relevant Indian Standard Specifications & Codes, BSI Publications, New Delhi.

Kasmalkar B. J. "Geotechnical Engineering", Pune Vidyarthi Griha Prakashana, Sadashiv Peth Pune-30, Latest edition.

Professional Elective Course I (a)								
			Concrete Material	.5.				
			COURSE OUTLIN	NE				
Course	Concrete	e Materials		Short	СМ	Course		
Title:				Title:		Code:		
Course	lescriptio	on:						
Engineer	ing is an	art of utilizing	forces and materials	for spe	cific require	ements. It	requires	
selection	of materi	ial for a particular	task. Consequently	it is nece	essary for an	n engineer	to know	
the prope	erties of m	naterial, particular	ly the construction m	aterial. 7	This course s	suffices the	at aspect.	
It includ	es proper	ties of various m	aterials used in civi	l engine	ering constr	uction lik	e stones,	
gravel, s	sand, lim	e, cement, bricks	s, wood, paints var	nishes, g	glass, metal	s and ma	any such	
materials	. The syll	abus describes the	ir basic civil enginee	ering prop	perties and t	heir applic	cations in	
civil eng	gineering.	The course also	describes in detail a	about the	e concrete v	which is a	a derived	
material.								
Lecture		Hours/week	No. of weeks	Total l	nours	Semeste	r credits	
		03	12	36		3		
Prerequ	isite cour	se(s):		1		I		
Nil								
Course	objectives							
This cou	ırse aims	to appraise an s	student about variou	is mater	ials used in	civil en	gineering	

construction, their availability, their basic properties, methods of examinations as per prevailing standards, and their civil engineering applications. The student must be able to select appropriate material for his/her application. The student must be able to examine the material according to standards. The student must know the concreting process and should be able to design concrete mix also.

Course outcomes:

After completion of this course the student must be able to

- 1. Know the commonly used materials in civil engineering materials and their general engineering properties.
- 2. Examine a material as per relevant codes of practice.
- 3. Select a suitable material for a specific civil engineering task.
- 4. Design a concrete mix.
- 5. Know the advancements going on in material technology and concreting.

		COURS	E CONTENT				
			Semester:		V		
Teaching Scheme:			Examination scheme				
Lectures:	3 hour	s/week	End semester exam (ESE):			60 marks	
			Duration of ESE:		03 hours		
	Internal Sessional Exams (ISE		ms (ISE):	40 marks			
Unit–I:		No. of Lect	ures: 08 Hours	: 08 Hours Marks: 12			
Common materials us	sed in con	struction indu	stry. Stone as a p	arent ma	terial. Class	ification of	
stones. Testing of stor	nes.						
Cement: - history, I	Manufactu	re of cement	, raw materials u	ised in	cement mar	nufacturing,	
ingredients of cemen	t, hydratic	on process of	cement, compound	ls in cer	nent, Types	of cement,	
properties and testing	of cement	, storage of cer	ment.				
Unit–II:		No. of Lect	cures: 08 Hours		Marks: 1	2	
Aggregates and testi	ng of agg	gregates: sourc	es, coarse and fin	ne aggre	egates. Conc	cept and	

importance of shape, size, texture, strength and their influence on concrete properties. Concept and determination of bulk density, specific gravity, adsorption and moisture content, soundness, alkali aggregate reactions, thermal properties of aggregates, grading of aggregates, flakiness index, elongation index, clay and fine silt content, organic impurities, specific gravity, bulk density and voids, crushing value, impact value, abrasion value.

Recycled aggregates: their uses in concrete.

Water: role of water, water quality for concrete.

Admixtures in concrete: plasticizers and super plasticizers.

Unit–III:	Unit–III:No. of Lectures: 08 HoursMarks:				
Fresh Concrete: Workability, factors affecting workability, determination of workability.					
Retarders and accelerators in concrete.					
Air entraining admixtures, effect on freezing and thawing, effect on workability, effect on					
strength. Effect on properties of hardened concrete.					
Pozzolanic admixtures in concrete,					
Segregation and bleeding, process of manufacturing of concrete, batching, mixing, transporting,					
use of pumps for transporting, placing of concrete, compaction of concrete, curing of concrete,					
finishing of concrete surfaces.					

Unit–IV:	No. of Lectures: 08 Hours	Marks: 12					
ength of concrete: water cement ratio gel/space ratio maturity of concrete relation between							

Strength of concrete: water cement ratio, gel/space ratio, maturity of concrete, relation between compressive and tensile strength, bond strength, high strength concrete, ultra high strength concrete, high performance concrete.

Elastic properties of aggregates, relation between elastic modulus of elasticity and strength, factors affecting modulus of elasticity, dynamic modulus of elasticity, poison's ration, creep: concept and measurement. Factors affecting creep. Shrinkage. Types, factors affecting shrinkage. Durability of concrete: definition, significance, Strength and durability relationship, impact of w/c ratio, permeability, cracks in concrete, factors responsible for cracks.

effect of temperature changes on concrete, effect of fire on concrete., sulfate attack on concrete, control of sulfur attack. Chloride attack and its control corrosion of concret, control measures.

Compression test on concrete.		
Unit–V:	No. of Lectures: 08 Hours	Marks: 12
-	e, tensile strength of concrete, f	factors affecting strengths, nor
	of mix design, terms and terminol	-
Concrete Institute Method of mix design in detail.	mix design, Indian Standard Rec	commended Method of concrete
special concretes: light weig concrete, fiber reinforced conc	ght concrete, Aerated concrete, N crete.	Io fines concrete, high density
cold weather concreting, hot v	veather concreting.	
Text Books:		
1. Concrete Technology	by M.S.Shetty, S Chand Publication	n.
2. Concrete Technology	by M. L. Gambhir, TMH Publication	on.
3. Concrete Technology	by S. V. Deodhar, Central Techno	Publication
Reference Books:		
1. Properties of Concrete	by A M Neville, Pearson Publicati	ons.

		Profess	ional Elective Cou	rse I (b)			
		Airpo	ort Planning And I	Design			
		(COURSE OUTLIN	E			
Course	Airport I	Planning And Desig	n	Short	APD	Course	
Title:				Title:		Code:	
Course	descriptio	n:			1	I	
Air trans	portation	is a rapidly growing	g field in developing	g countr	ies like Indi	a. The rol	e of civil
engineer	in air tra	nsportation is to pro	ovide infrastructural	facilitie	es for aircra	ft landing	, takeoff,
repair, m	naintenanc	e and parking along	, with amenities for	passeng	ers and staff	f. This cou	urse aims
to provid	de an intro	oduction to design	of airport planning	such as	surveys site	e selection	n, airport
architect	ure. It dea	als with the design	of runway, taxiway	y, termin	nal area, pav	vement de	sign and
drainage	system.						
Lecture		Hours/week	No. of weeks	Total l	nours	Semeste	r credits
		03	14	42		03	
Prerequ	Prerequisite course(s):						
Nil							
Course	objectives	:					

The student must know the importance and scope of air communication and must be able to provide basic infrastructural facilities needed for aircrafts for their operations. The student must know the concepts in Airport design and Planning with basic requirement for site selection, survey required also design of runway, pavement design and rainwater drainage system.

Course outcomes:

After successful completion of this course the student will be able to:

- i. To know the role of an air port design and maintenance engineer.
- ii. To know the civil engineering requirements of an airport.
- iii. Select a site for airport.
- iv. Design a runway, taxiway, hanger, apron, beacon and terminal building.
- v. Design the various visual aids and learn the importance of air traffic control

		COUR	SE CONTENT		
Name of the Subject: Geotechnical Engineering		Semester:	V		
Teaching Scheme	•		Examination s	cheme	
Lectures:	3 hour	s/week	End semester e	exam (ESE):	60 marks
			Duration of ES	SE:	03 hours
			Internal Sessio	onal Exams (ISE):	40 marks
Unit–I	•	No. of Le	ctures: 08 Hours	ures: 08 Hours Marks: 12	
Introduction-				I	
History of aviation	n, air transpor	tation in Ind	ia, IAAI,AAI, open	sky policy, airport t	erminology,
components parts	of aero-plar	ne, Aircraft	characteristics, char	racteristics of the j	et aircrafts,
Relation between	aircrafts & ai	irports, impo	ortance of field lengt	th requirements, Eff	ect of noise
created by aircraf	ts, noise regu	ilation by F.	AA, Classification of	of aerodromes, class	sification of
airports.					

Unit–II:	No. of Lectures: 09 Hours	Marks: 12
Airport Surveys :objectives o	f surveys, types of surveys & dr	awings to be prepared, Airport

Planning : improvement of existing airport, Airport site selection, A/P size, obstructions, zoning laws, Regional planning A/P architecture, measures to control adverse impact, Importance of air traffic control, flight rules, Air traffic control network, air traffic control aids, Automation system in air traffic control aids, GPS air traffic control, free flight air traffic control.

Unit–III:	No. of Lectures: 09 Hours	Marks: 12			
Runway Design: runway orig	entation, change in direction of	runway, basic runway length,			
correction to basic runway length, Geometric design of runways, Balanced field concept, airport					
capacity, Runway pattern, comparison of runway patterns, Taxiway Design: layout of taxiways,					
geometric standards for taxiway	y, Exit taxiway, optimum location	of exit taxiways, Design of exit			
taxiway, Loading and holding a	prons.				
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12			
Planning and Design Termina	al Area: Terminal Building, Passe	enger flow, Parking of vehicles,			
Size of apron, Apron turntable	, System of aircraft parking, Har	ngers, Protection from jet blast,			
Typical Airport Layout, Requi	irement of pilots for visual aids,	Airport markings guidance to			
pilots during landing, Factor af	fecting airport lighting, elements of	of airport lighting, Beacon light,			
Runway threshold lighting, Apr	on hanger lighting.				
Unit–V:	No. of Lectures: 08 Hours	Marks: 12			
Air Port Pavement Design :	Types of pavements, design fact	cors or requirements, Design of			
flexible, rigid pavements, LC	N method of pavement design, C	Causes of failure of pavements,			
maintaintence & evaluation of	of air port pavement, Importance	ce of airport grading, general			
requirement of grading, operat	tion of grading, Aims of airport	t drainage, functions of airport			
drainage, special characteristics of air port drainage, Basic requirement of airport drainage					
system, surface drainage, ponding, subsurface drainage, types of pipes for drainage.					
Text Books:					
1. Airport Engineering, Ke	etki Dalal and S C Rangwala S K G	Chand Publisher.			
2. Airport Engineering, S I	K Khanna, M G Arora, and S S Jai	in, TMH publications.			

- **1.** Airport Engineering Planning and Design, S C Saxena CBS publication.
- Planning and Design of Airports, William Sproule, Seth Young, Robert Horonjeff, Francis Mckelvey, TMH publications.

Professional Elective Course – I (c)						
Repair and Rehabilitation of Structures						
	COURSE OU	TLINE				
Course title	Repair and Rehabilitation of	Short Title	RRS	Course code		
	structure					
Course descript	ion			11		
Civil engineering	g structures are designed to serve	for long time.	They are	expensive. Hence a		
long service spa	n is expected from them. Howeve	r, they are deg	raded due	to climatic effects,		
earth quakes and	d physical injuries caused manuall	y and by accid	dent. They	need maintenance,		
timely repair a	nd rehabilitation from time to t	ime. This enh	ances the	ir service life and		
functionality also	b. The present syllabus is aimed to a	enable a studen	t to unders	tand the importance		
and scope of Re	pairs and Rehabilitation of civil eng	gineering struct	ures, its sc	ope and current day		
technology avail	able to deal with the issue.					
Lectures	Hours/week	No. of	Total	Semester credits		
		weeks	Hours			

	3		14	ŀ	42	3
Prerequisite cour	ses					
Nil						
Course objectives	3					
To learn various d	istress and damages to	o conc	crete and m	asonry stru	ctures	
• To understand th	e importance of main	tenan	ce of struct	ures		
• To study the vari	ous types and propert	ties of	repair mat	erials		
• To assess the dar	nage to structures usi	ng vai	rious tests			
• To learn the impo	ortance and methods	of sub	strate prepa	aration		
• To learn various	repair techniques of c	lamag	ged structur	es, corrode	d structu	res
Course outcomes	:					
After successful co	mpletion of this cour	rse the	e student w	/ill be able	to:	
• various distress a	and damages to conc	rete a	ind masonr	y structure	S	
• the importance of	of maintenance of str	uctur	es, types ar	nd properti	es of rep	air materials etc
·	e to structures and v					
				F		
Repairs and	Rehabilitation		Semester:	L	· ·	VI
Structures	Kenabintation	U	Semester.			V 1
Teaching Scheme			Evom	ination scł		
Lectures:	3 hours/week			emester		narks
			-	(ESE):		
				ion of ESE al Session		nours narks
				s (ISE):	ai 401	llal KS
Unit–I:	No. of Lectu	res: 0		- (-~-),	Maı	rks: 12
Introduction Mai	ntenance, rehabilita	tion,	repair, r	etrofit an	d stren	gthening, need for
rehabilitation of s	tructures. Cracks in	R.C. 1	buildings V	arious cra	cks in R	.C. buildings, causes
and effects Main	tenance importance	of m	naintenance	, routine	and prev	ventive maintenance
Damages to masor	nry structures Various	dama	ages to mas	onry struct	ures and	cause.
Uni	it–II:		No. of		Ma	arks: 12
		Le	ctures: 09			

Hours

Repair materials Various repair materials, Criteria for material selection, Methodology of selection, Health and safety precautions for handling and applications of repair materials Special mortars and concretes Polymer Concrete and Mortar, Quick setting compounds Grouting materials Gas forming grouts, Salfoalumate grouts, Polymer grouts, Acrylate and Urethane grouts. Bonding agents Latex emulsions, Epoxy bonding agents. Protective coatings Protective coatings for Concrete and Steel FRP sheets.

Unit–III:	No. of Lectures: 08	Marks: 12
	Hours	

Damage diagnosis and assessment Visual inspection, Non Destructive Testing using Rebound hammer, Ultra sonic pulse velocity, Semi destructive testing, Probe test, Pull out test, Chloride penetration test, Carbonation, Carbonation depth testing, Corrosion activity measurement Substrate preparation Importance of substrate/surface preparation, General surface preparation methods and procedure, Reinforcing steel cleaning.

Unit-IV:No. of Lectures: 08 HoursMarks: 12Crack repair Various methods of crack repair, Grouting, Routing and sealing, Stitching, Drypacking, Autogenous healing, Overlays, Repair to active cracks, Repair to dormant cracks.Corrosion of embedded steel in concrete Corrosion of embedded steel in concrete, Mechanism,Stages of corrosion damage.

Unit–V:	Unit–V: No. of Lectures: 08 Hours Marks: 12					
Repair of various corrosion damaged of structural elements (slab, beam and columns) Jacketing						
Jacketing, Column jacketing, Beam jacketing, Beam Column joint jacketing, Reinforced concre						
jacketing, Steel jacketing,	FRP jacketing. Strengthening	Strengthening, Beam shear				

strengthening, Flexural strengthening.

Text Books:

1. Repair and protection of concrete structures by Noel P.Mailvaganam, CRC Press, 1991.

2. Concrete repair and maintenance Illustrated by Peter.H.Emmons, Galgotia publications Pvt. Ltd., 2001.

3. "Earthquake resistant design of structures" by Pankaj agarwal, Manish shrikande, PHI,2006

Reference Books:

1. Failures and repair of concrete structures by S.Champion, John iley and Sons, 1961.

2. Diagnosis and treatment of structures in distress by R.N.Raikar Published by R & D Centre of Structural Designers and Consultants Pvt.Ltd, Mumbai.

3. Handbook on repair and rehabilitation of RCC buildings, CPWD, Government of India.

4. Handbook on seismic retrofit of buildings, A. Chakrabarti et.al., Narosa Publishing House, 2010.

	Open Elective Course I (a)						
Air Pollution Control Technology							
	(COURSE OUTLIN	NE		1		
Course	Air Pollution Control Tech	nnology	Short	EE	Course		
Title:			Title:		Code:		
Course d	lescription:						
This cou	irse apprises a graduate stu	dent with the imp	ortance	of air qual	lity, source	es of air	
pollution	, basic causes of air pollut	ion, energy – envi	ronment	– economi	cs relation	ship and	
impact o	f life style on environmenta	al degradation. It d	escribes	the effects	of air pol	lution of	
human b	beings, animals, plants and	property. It also p	presents	mathematic	al modelir	ng of air	
pollution	dispersion and its relation	with climatic condi	tions. It	aims to ena	ble the en	gineer to	
design st	ack for air pollution control.	It also aims to enab	ole the er	igineer to co	onduct air	pollution	
surveys and to design air pollution control devices.							
Lecture	Hours/week	No. of weeks	Total l	nours	Semeste	r credits	
	3 hour /week	14	42		3		
Prerequi	isite course(s):						
-							

Course objectives:

The basic objective of the course is to make aware a student about importance, scope and generation of air pollution, and meteorologically governed dispersion of air pollution. It is also to train the students for designing facilities for air pollution control, including equipments and estimation of height of stack. The course must enable student to provide air pollution control technology to the client depending upon their requirements.

Course outcomes:

After successful completion of this course the student will be able to:

- 1.Understand the air quality parameters of significance and importance of air quality and impact of pollution on human health, plant health and animal health.
- 2. Assess the sources and basic cause of air pollution.

3. To evaluate the dispersion of air pollution and impact of meteorological factors.

- 4. To design a stack.
- 5. To be able to design air pollution control devices.

		COURSE	CONTENT		
Air Pollution Co	Air Pollution Control Technology Semester: VI		VI		
Teaching Scheme:		Examination scheme			
Lectures:	3 hour	s/week	End semester exam (ESE):60		
			Duration of ES	SE:	03 hours
			Internal Sessio	onal Exams (ISE):	40 marks
Unit-	-I:	No. of Lectu	ires: 09 Hours	Marks: 1	2
plants and proper					
Unit–	II:	No. of Lectu	ires: 09 Hours	Marks: 1	2
		1		Marks: 1 Atmospheric stability	
Meteorological p	arameters affect	cting dispersion	of air pollution, A		conditions,
Meteorological p thermal and su	arameters affect bsidence inver	cting dispersion	of air pollution, A um mixing deptl	Atmospheric stability	conditions, , Gaussian
Meteorological p thermal and su dispersion model	arameters affec bsidence inver ls- their limitat	eting dispersion rsions, maximu ions and use fo	of air pollution, A um mixing deptl or estimation of a	Atmospheric stability	conditions, , Gaussian on for point

maximum air pollution and its location, design of stack, estimation of plume rise.

Unit–III:	No. of Lectures: 08 Hours	Marks: 12			
Sampling of ambient air, exha	aust air sampling, air pollution	surveys, air pollution indices,			
visibility surveys, permissible limits of air pollution as a function of concentration and time of					
exposure, control of odor- intro	duction to common methods, intr	roduction to control of CO, SO_x			
and NO _x , automobile air pollution	on- elements, why it is critical to	be controlled,			
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12			
Nature's mechanism of cleaning of air pollution, air pollution control methods - change in raw					
inature's mechanism of cleaning	g of air pollution, air pollution co	ontrol methods – change in raw			
	g of air pollution, air pollution co hange in process, alternative f	-			
material, change in design, c		fuels, air pollution control by			
material, change in design, c scrubbers- gravity settler, cyclor	hange in process, alternative f	Suels, air pollution control by ubber, electro static precipitator-			
material, change in design, c scrubbers- gravity settler, cyclor	change in process, alternative f ne separator, fabric filter, wet scru	Suels, air pollution control by ubber, electro static precipitator-			
material, change in design, c scrubbers- gravity settler, cyclor	change in process, alternative f ne separator, fabric filter, wet scru	Suels, air pollution control by ubber, electro static precipitator-			

Major air pollution episodes across the world, air pollution scenario in India, air pollution control act- salient features, global air pollution phenomena – global warming, climatic changes, global cooling, and acidic rains. Constitution of IPCC, its role, energy – environment and economics relationship, life style and environment. Major global initiatives to curb air pollution.

Text Books:

1. Air pollution by MN Rao and HVN Rao, TMH publications.

Reference Books:

Air Pollution: its origin and control, by Kenneth Wark and Cecil F Warner, Harper and Row Publishers, New York.

	Open Elective Cou	ırse I (b)		
	Geographical Informa	ation System		
	COURSE OUT	LINE		
Course	Geographical Information System	Short	GIS	Course
Title:		Title:		Code:
Course d	escription:	l	1	

This course offers an introduction to the concepts, principles, and theories behind Geographic Information Systems (GIS), with emphasis on the nature of geographic Information. This course is designed to enable student to evaluate, to apply and to analyze software's related to GIS .mainly to highlight the relevant basic knowledge of GIS modeling, spatial data analysis vector data and raster data processing. Students acquainted with related knowledge can be able to apply in design, and modeling. Apply knowledge of GIS to be a system of hardware, software, data, people, organizations, and institutional arrangements for collecting, storing, analyzing, and disseminating information about areas of the earth.

Lecture	Hours/week	No. of weeks	Total hours	Semester credits
	03	14	42	03
Duono guigito com				

Prerequisite course(s):

Nil

Course objectives:

- To know the different GIS software and their capabilities
- To study the various functions tools available and perform query operations in GIS
- To study the different analysis types in GIS
- To learn MCE, weight age and ranking capabilities of GIS
- To learn the Internet capabilities of Web GIS
- To study basic concept of GIS
- To study the data structure in GIS
- To study data conversion in GIS

Course outcomes:

After successful completion of this course the student will be able to:

- The gradate is expected to know the advanced techniques and methods that are required to conduct the GIS survey of vast areas
- A graduate is able to know different GIS software
- A graduate should develop skills to implement and practice the use of GIS software for areas of large areas.
- A graduate should obtain knowledge of spatial, vector data and raster data
- A Graduate is expected to express working principles used and methodology of the advanced GIS software

		COURS	E CONTENT		
GIS		Semester:	VI	VI	
Teaching Scheme:		Examination scheme			
Lectures: 3 hours/week			End semester e	60 marks	
I		Duration of ES	03 hours		
			Internal Sessio	onal Exams (ISE):	40 marks
Unit–I: Introduction to No. of I			tures: 09 Hours	Marks:	12
GIS					
Definition, concept	s, Informati	on System, co	omponents of GIS,	History, elements	of GIS,
objectives of GIS, h	ardware and	l software requ	uirements of GIS, C	Geospatial data arch	itecture,
Operations, Geogra	phic co-ordi	nate system,	Map Projections, I	nput data for GIS,	display,
types of output pro	ducts, GIS	categories, Le	vel and scale of M	leasurement, impor	tance of
data quality.					
Unit-II: Vecto	r Data	No. of Lec	tures: 09 Hours	Marks:	12
and Processing	S				
GIS data types, data	a Representa	tion, Data So	urces, typical GIS	data sets, Data Acq	uisition,
vector data model,	relationship	between class	es, data structure, c	lata verification and	l editing
spatial data models	and errors- (GIS databases,	attributes data inpu	ut and management	

Unit–III: Raster Data	No. of Lectures: 08 Hours	Marks: 12
and Processing		
Elements of data model, cell	, value, data structure, cell by	cell encoding, run length
encoding, Quad tree, Header fi	les, format, Types of raster data,	data compression, Linking
and integration of vector data.		
Unit–IV: Data	No. of Lectures: 08 Hours	Marks: 12
Conversion and Editing		
6	lium conversion, Spatial interp	olation, measurement and
analysis methods, Data accura	acy and standards, Attribute dat	a input and Management-
Relational mode- Data manipu	ulation- classification techniques	, Digital Elevation Model:
Need of DEM, Various structur	_	-
Unit–V: Meta Data and	No. of Lectures: 08 Hours	Marks: 12
GIS Modeling		
Meta data- data standard - O	GC - open source GIS - GIS	modeling, basic elements,
classification, model processin	ng, integration, Binary models,	Index model, Regression
models, Linear Regression mod	el, Logistic Regression model, Pro	ocess model.
Text Books:		
	ing, "Concept and Techniques of	of Geographic information
	ing, "Concept and Techniques of	of Geographic information
1.C P LO Albert K. W. Yeu System", Prentice Hall India	ing, "Concept and Techniques of f Remote Sensing and Geographi	
1.C P LO Albert K. W. Yeu System", Prentice Hall India		
1.C P LO Albert K. W. YeuSystem", Prentice Hall India2.M Anji Reddy, "Textbook of BS Publications,		cal Information systems",

- 1. .Burrogh P.A., "Principles of Geograpical Information System for Land Resources Assessment", Oxford Publications.
- 2. A.M. Chandra and S.K. Ghosh. "Remote Sensing and Geographical Information System".
- Longley, Paul A., Michael F. Goodchild, David J. Maguire, David W. Rhind ,"Geographic Information Systems and Science", Second Edition 2005, John Wiley & Sons, New York.
- 4 Satheesh Gopi, R. Sathikumar, N. Madhu, "Advanced Surveying (Total Station, GIS and Remote Sensing)", First Edition 2007:

Open Elective Course I (c)						
	PROJECT MANAGEMEN	NT TECHNI	DUES			
			~~			
	COURSE OU	TLINE				
Course	Project Management Techniques	Short	PMT	Course		
Title:		Title:		Code:		
Course	description:	I	1			

This course introduces the students about concepts in Project Management such as: Scope of Project Management civil Engineering society, Importance of Project Management for large scale works, Principles of Project Management and its techniques and Application of CPM and PERT techniques for project management with special applications to civil engineering.

Lecture	cture Hours/week		Total hours	Semester credits	
	03	14	42	03	

Prerequisite course(s):

Nil

Course objectives:

- To introduce the theory of Project Management in civil engineering works.
- Apply the project management techniques in various civil engineering fields.
- To appraise the concept of critical path methods and project evaluation and research techniques.
- To enable students to calculate scheduling of projects by CPM and PERT.

Course outcomes:

After successful completion of this course the student will be able to:

- A gradate is expected to know the advanced techniques and methods in project management that are required in civil engineering work.
- A graduate is able to schedule the time for project using the technique of project management.
- A graduate is expected to demonstrate and practice the basics of project management.
- A graduate should develop skills to implement and practice the use of project management techniques for civil engineering projects.
- The graduates are expected to plan the project by CPM and PERT.

COURSE CONTENT					
PROJECT MANAGEMENT	Semester:				
TECHNIQUES					
Teaching Scheme:	Examination scheme				

Lectures:	3 hours/week	End sem	End semester exam (ESE):60 mar			
	1	Duration	Duration of ESE:		03 hours	
		Internal	Internal Sessional Exams (ISE): 40 m			
Unit–I: N		of Lectures: 08 H	ours	Marks: 1	12	
General Management	t: Comparison I	between traditional	manage	ment and moder	n scientific	
management, Roles o	f Taylor, Fayol	, Mayo and Meg	regor in	management, N	A anagement	
functions, Managemen	nt styles and	Objectives of Ma	nagement	t, Organizations	, forms of	
organizations.						
Tools and technique	s of Project N	fanagement: Plar	ining the	Project, Work	Breakdown	
Structures – Work	Packages -Cost	Accounts, Sche	dule Pla	nning, Financia	l Planning,	
Introduction of Gantt	chart and PEF	RT (Performance	Evaluatio	n and Review	Technique),	
Introduction of CPM (C	Critical Path Met	hod) and Line of B	alance.			
Need of management ir	ndustrial act.					
Unit–II:	No. o	of Lectures: 08 Ho	urs	Marks: 1	12	
Excavating & Hauling	Equipments:					
a) Power shovels; size,	basic parts, selec	tion, factors affect	ing output	t.		
b) Draglines: - types, si	ze, basic parts.					
c) Bulldozers-types, mo	oving earth with	oull dozers.				
d) Clamshells – Clamsh	nell buckets.					
Advanced equipments:	crushers, pile dr	ving, compacting,	hosting et	c.		
Unit–III: Gantt char	t and No. o	of Lectures: 08 Ho	urs	Marks:	12	
СРМ						
a) Definition of Ga	antt chart, histori	cal development ar	ld exampl	es		
b) Basics for using	CPM and critica	al path schedule.				
c) Crash duration a	and Float or Slac	k in Project Manag	ement.			
d) Network diagram in CPM and Critical Path.						
e) Determination of floats by CPM and comparison between CPM and PERT.						
e) Determination (of floats by CPM	and comparison be	etween CF	PM and PERT.		

Uni	t-IV: Introduction of	No. of Lectures: 08 Hours	Marks: 12	
	PERT			
a)	Overview of PERT, Eve	nts and activities, Four types of ti	me required to accomplish an	
	activity in PERT			
b)	Management tools for F	ERT and it's Examples.		
c)	Advantages and disadva	ntages of Gantt chart and PERT.		
Un	iit–V: Cost Analysis	No. of Lectures: 08 Hours	Marks: 12	
a)	Cost analysis, cost curve	e, optimization & crashing of netw	ork for civil engineering	
	project.			
b)	Updating of network, Jo	b layout and Mass housing.		
c)	Value engineering and s	mall scale industries.		
d)	Software use for project	management.		
e)	Basic economic concept	s, banking aspects.		
ext H	Books:			
1.	Construction Project Ma	nagement Planning, Scheduling a	nd Controlling (Tata McGraw	
	Hill, New Delhi)			
2.	Construction Management and Planning – Sengupta and Guha (Tata McGraw Hill			
	publication)			
3.	Construction Manageme	ent – <i>Roy, Pilcher</i>		
efere	ence Books:			
1.	Construction Planning &	z management- P.S. Gahlot & B.M	I. Dhir (New Age internationa	
	(p) Ltd.			
2.	Construction Manageme	ent – O'Brien.		
3.	During the Management	huja H.N. (John Wiely, New Yor	1 \	

HYDRAULIC ENGINEERING LAB							
LAB COURSE OUTLINE							
Course	HYDRAULIC ENGINEERING LAB	Short	HDE	Course			
Title:		Title:	ENGG	Code:	l		
Course	Course description:						
This lab covers experiments related to measurement of drag and lift, flow properties in pipes and							
open cha	open channels and also characteristic of hydraulic turbines and centrifugal pump.						

Laboratory	Hours/week	No. of weeks	Total hours	Semester	er credits		
	02	14	28	1			
End Semester	Exam (ESE) Patter	n: Ora	Oral (OR)				
Prerequisite co	ourse(s):						
Nil							
Course objecti	ves:						
In this laborato	ory students will be	introduced to the	application of viscou	as property of	f fluid to		
measure drag	and lift. Also stud	ents are introduc	ced to pipe and op	en channel f	low and		
characteristics	of hydraulic turbines	and centrifugal p	oump.				
Course outcon	nes:						
Upon successfu	Il completion of lab C	Course, student w	ill be able to:				
- Measure	e drag and lift forces	on airfoil and exp	lain their variation w	ith angle of at	tack.		
- Determi	ine friction factor and	hence to develop	calibration equation	for pipe.			
		-	y, specific force and		ıp.		
-			charge measurement i	•	-		
_			oower for different h	-			
	gal pump.	I man a serie i		<i>.</i>			
	8 F						
	L	AB COURSE CO	ONTENT				
Hydraulic Engi	neering	Semest	er:	V			
Teaching Sche	me:	Exami	nation scheme				
Practical:	2 hours/we	ek End se	mester exam (ESE):	2	5 marks		
		Interna	l Continuous Assess	sment 2	5 marks		
		(ICA):					
At least seven of	out of 11 experiments	s should be perfor	med.				
	ndary layer on flat pl	_					
•	of drag and lift on a						
	-		over circular cylinder				

3.Determination and analysis of pressure distribution over circular cylinder

- 4.Dtermination of friction factor and calibration equation for given pipe
- 5.Study of uniform flow formulae in open channel
- 6.Study of specific energy and specific force in open channel flow
- 7. Calibration of venturiflume
- 8. Measurement of different parameters of hydraulic jump in laboratory
- 9. Study of operating characteristic of Pelton Wheel Turbine
- 10.Study of operating characteristic of Francis Turbine
- 11. Study of performance of centrifugal pump

At least one site visit to hydro power plant is compulsory.

Text Books:

A Textbook of Fluid Mechanics & Hydraulic Machines- Dr. R. K. Bansal, Laxmi Publications Limited.

Reference Books:

Fluid Mechanics – Dr. A. K. Jain, Khanna publisher, Delhi

Flow in open Channels - Dr. K. Subramanya, Tata Mcgraw-Hill education Pvt. Ltd., New Delhi

Hydraulic Machines- Dr.Jagdish Lal, Metropolitan Book Co. Pvt. Ltd., New Delhi

Hydraulic Machines- Dr. R. K. Rajput

Guide lines for ICA:

ICA shall be based on continuous evaluation of students performance throughout the semester and practical assignments submitted by the students in the form of journal.

Guidelines for ESE:

ESE shall be based on laboratory journal submitted by the student. In ESE the student may be asked to answer questions based on experiments/assignments. Evaluation will be based on performance in oral examination.

Geotechnical Engineering Lab					
LAB COURSE OUTLINE					
Course	Geotechnical Engineering Lab	Short	GTEL	Course	
Title:		Title:		Code:	
Course	lescription:				

This laboratory course covers experiments related to properties of soils and their measurement. It deals with learning of the practical applications through assignment work such as field investigations, bearing capacity of shallow foundations, pile foundations, etc. They are required to determine the relevant parameters necessary for applications such as prediction of bearing capacity, foundation design, design of pile foundations etc.

Laboratory	Hours/week	No. of w	eeks	Total hours	Semester credits	
	2	14		28	1	
End Semester Exam (ESE) Pattern:			Practica	ul (PR) / Oral (OR)		

Prerequisite course(s):

Nil

Course objectives:

To enable the students:

- 1. To measure the various properties of soils in laboratory.
- 2. To carryout field soil investigations.
- 3. To estimate bearing capacity of shallow foundations by various theories.
- 4. To study design of different types of foundations.

Course outcomes:

Upon successful completion of lab Course, student will be able to:

- 1. Determine properties of soils.
- 2. Carryout soil investigation and prepare report.
- 3. Design foundations for different conditions of bearing capacity and other design parameters.

LAB COURSE CONTENT

Name of the Subject: GTE		Semester: V		
Teaching Scheme:	cheme: Examination scheme			
Practical:	2 hours/week	End semester exam (ESE):25 r		
		Internal Continuous Assessment	25 marks	
		(ICA):		

A) Any eight experiments out of following set-

- 1. Field density by core cutter method, sand replacement method.
- 2. Sieve analysis and particle size determination or hydrometer analysis.
- 3. Specific gravity determination by voluminometer/ pycnometer method.
- 4. Determination of liquid limit and plastic limit
- 5. Determination of shrinkage limit
- 6. Determination of co-efficient of permeability by constant head and falling head method.
- 7. Direct shear test.
- 8. Unconfined compression test
- 9. Vane shear test.
- 10. Proctor's test (MDD / OMC)
- 11. Tri- axial shear test
- 12. C.B.R. test or Consolidation test
- 13. Differential free swell test or swelling test.
- 14. Assignments on the following topics (any eight)
 - a) Rebhann's and Cullman's graphical method for determination of earth pressure.
 - b) Solution of problems on shear strength parameters using graph.
 - c) Design on flexible pavement and rigid pavement.
 - d) Determination of BC by Terzaghi's Method.
 - e) Study of Plate Load Test/SPT Test.
 - f) Preparation of Soil investigation report based on given data.
 - g) Problems on Settlement analysis.
 - h) Problems on Design of pile foundations.
 - i) Design considerations of caissons and well foundation.
 - j) Design of under reamed pile.

C) Demonstration of any **one** of following tests;

1. Plate load test.

2. Standard penetration test.

Text Books/ Reference Books:

- 1. Dr. B.C.Punmia, Soil Mechanics and Foundation Engineering, Laxmi Publications,
- 2. Gulhati and Datta , GeoTechnical Engineering, Tata McGraw Hill.
- Dr. Alam Singh, Soil Engineering in Theory and Practice (Vol. -1), CBS Publication, Delhi.
- Dr. Alam Singh, Modern Geotechnical Engineering & Foundation, CBS Publication, Delhi.

Guide lines for ICA:

ICA shall be based on continuous evaluation of students' performance throughout the semester and practical assignments submitted and term work prepared by the students in the form of Journal.

Guidelines for ESE:

ESE will be based on laboratory journal submitted and term work prepared by the student. In ESE the student may be asked to answer questions based on experiments/assignments. Evaluation will be based on performance in oral examination.

Disaster Preparedness & Planning Management Lab					
	LAB COURSE OUTL	INE			
Course	Disaster Preparedness & Planning	Short	DPPM	Course	
Title:	Management	Title:		Code:	

Course description:

Disasters may be manmade or natural like earth quake, volcanoes, floods tsumani etc. Manmade disasters pertaining to civil engineering include construction site accidents like collapse of under construction structure or old structure, landslides, explosions etc. Modern technology enables mankind to prevent or overcome the damage caused by them. However technology alone is not adequate. Proper planning and management of resources is required to prevent and overcome the damages of such disasters. The present course describes the importance, scope and technical approaches for disaster preparedness and planning management.

Laboratory	Hours/week	urs/week No. of weeks		Total hours	Semester credits	
	2	14		28	1	
End Semester Exam (ESE) Pattern:25			Oral (C	OR):25		

Prerequisite course(s):

Nil

Course objectives:

The present course aims to enable students to understand basic concepts in disaster management, definitions & terminology used in disaster management, types & categories of disaster, the challenge posed by disaster, and impa*cts* of disaster. It trains a student in key skills required for disaster preparedness and planning management.

Course outcomes:

Upon successful completion of lab Course, student will be able to:

- Identify various types of disasters
- Learn the disaster management techniques & its analysis
- Implement safety management & public awareness regarding disaster management.

LAB COURSE CONTENT					
Disaster Prepared	ness & Planning	Semester: V			
Management Lab					
Teaching Scheme:		Examination scheme			
Practical:	2 hours/week	End semester exam (ESE):	25 marks		

		Internal Continuous Assessment	25 marks
		(ICA):	
LIST	T OF PRACTICAL		
1)) To identify various types of disasters		
a.	Natural Disasters: Study of Earthquake,	Floods, Coast Hazard, landslides etc	с.
b.	. List out & collect information data for abo	ove natural disaster happened in las	t ten years.
c.	Manmade Disaster: Chemical and indust	rial hazard, nuclear hazard etc.	
d.	. List out & collect information data for a	above manmade disaster happened	in last ter
	years.		
2)	To learn the disaster management techn	iques and its analysis	
a.	. Rescue operation & casualty management		
b.	. Risk management & emergency managem	lent	
c.	Administrative set up & organization		
3)	To implement public awareness regarding	ng disaster management	
a.	• The study Disaster Management acts		
b.	• To study emergency support function (EPI	F) and nodal/support agencies.	
	Lab course content : two assignn	nent on each of above content	
Гext I	Books:		
1.	. Pradeep Sahni, Disaster Risk Reduction in	ı south Asia,	
2.	. Ghosh G. K. 2006, Disaster Mangement, A	APH Publishing corporation	
3.	. Rajdeep Dasgupta, Disaster Mangement, I	Mittal Publication	
4.	. Dr.Kadambaui Sharma, Disaster Mangem	aent in India, Inanda Prakashan, Ne	w Delhi

Reference Books:

- 1. Davies VS Thomsan K- Thomsan Construction safety, Telford London
- 2. Disaster Medical Systems Gudelins, Emergency Medical Services Authoroty, State of Californa. EMSAn214 June 2003

Guide lines for ICA:

 ICA shall be based on continuous evaluation of student's performance throughout the semester & term work prepared by student in the form of journal.

Guidelines for ESE:

The student may be asked to answer questions based on ICA. Evaluation will be based on performance in oral examination.

Minor Project (Stage – I)						
LAB COURSE OUTLINE						
Course	Course Minor Project (Stage – I) Short MPROJ- Course					

Title:		Title:	SI	Code:			
Course	Course description:						

Laboratory work or experimentation is a line of distinction between science and other subjects. A project is an integration of experimental work performed to achieve an specific task. Projects not only teach experimentation, they teach resource planning and management, time and manpower management and ability work in team also. It also aims to enable to apply the theoretical concepts to solve problems with multidisciplinary approach. Ultimately it enables to demonstrate professionalism with ethics; present effective communication skills and relate engineering issues to broader societal context.

Hence projects are given due space in the curriculum right from third year level.

The Minor project stage I is the first link in the series. The objective of this project is primarily to formulate or identify a 'problem' that can be solved in the specified time and resources available and to actually solve it. The word problem is used in broad sense referring to any activity like analyzing, designing, fabricating, developing, surveying, etc.

Laboratory	Hours/week	No. of weeks	Total hours	Semester credits				
	6	14	84	3				
End Semester Exam (ESE) Pattern:								
Prerequisite course(s):								
Nil								
Course objecti	ves:							
1. To understa	nd the meaning, obje	ectives and purpose	of projects.					
0 T 1 (1.1 1 C 1	• • • •	• . • • •					

- 2. To understand the value of achieving perfection in project implementation & completion.
- 3. To apply the theoretical concepts to solve problems with teamwork and multidisciplinary approach.
- 4. To demonstrate professionalism with ethics; present effective communication skills and relate engineering issues to broader societal context.

Course outcomes:

Upon successful completion of lab Course, student will be able to:

1. Undertake problem identification, formulation and solution

- 2. Demonstrate a sound technical knowledge of their selected project topic.
- 3. Design engineering solutions to complex problems utilizing a systems approach.
- 4. Demonstrate the knowledge, skills and attitudes of a professional engineer for problem solving.
- 5. Demonstrate ability to work in team

LAB COURSE CONTENT

Minor Project (Stage – I)		Semester:	7		
Teaching Scheme:		Examination scheme:			
Practical:	6 hours/week	Internal Continuous Assessment 50 m			
		(ICA):			

At third year the students shall carry out a minor project in a group of maximum five students. The project work spans both the semesters. By the end of Semester – V the students shall complete the partial work, and by the end of Semester – VI the students shall complete remaining part of the project. Assessment for the project shall also include presentation by the students. Each teacher can guide maximum 04groups of minor projects.

The project may be either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department. The work may also be Study/Survey/Design.

Minor Project (Stage – I) Report will include literature survey, problem identification, work methodology, preparing material specification and material procurement, collection of data etc. Approximately 60% work should be completed by the end of Semester – V. Each student group should submit partial project report in the form of thermal bound at the end of Semester –V.

Guide lines for ICA:

The Internal Continuous Assessment (ICA) for project shall be based on continuous evaluation of students' performance, active participation, knowledge / skill acquired throughout semester and presentation by the students. The final assessment shall be done jointly by the guide and departmental committee. A three-member departmental committee including guide, appointed by

Head of the department, shall be constituted for the assessment. The assessment for Minor Project (stage – I) in Semester – V shall be as per the guidelines given in Table – A.

			Assess	Assessment by Departmental Committee					
Sr.	Name	Attendance /	Problem	Depth of	Presentation	Total			
No.	of the	Participation	Identification /	Survey	Methodology / Design/work	Report writing	Understanding		
	Student		Project		done				
			Objectives						
	Marks	5	5	5	15	5	10	5	50

Table – A

Constitution of India

Basic features and fundamental principles

The Constitution of any country is the documentation of supreme rules and regulations used to govern the nations. It decides the powers of various components of the government and mode of their exercise. India is the world's largest country having world's largest written constitution. The constitution has been proven to be robust enough in the voyage of democratic functioning of 70 years of this nation. In fact it proven to be the world's strongest constitution to tackle all critical socio-political conditions. The Constitution of India demonstrates the idea of "Constitutionalism" – a modern and progressive concept historically developed by the thinkers of "liberalism" – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of "constitutionalism" in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America. At the same time the constitution of India is based upon the ancient vedic ideology of consensus and unity amongst diversity. It defines 'right is might' not might is right.

The Constitution of India is not only a legal document but it also demonstrates social, political and economic perspectives of the Indian Society. It represents India's legacy of "diversity".

Course content

- 1. Meaning of the constitution, constitutionalism and law.
- 2. Historical perspective of the Constitution of India
- 3. Salient features and characteristics of the Constitution of India
- 4. Scheme of the fundamental rights
- 5. The scheme of the Fundamental Duties and its legal status
- 6. The Directive Principles of State Policy Its importance and implementation

- 7. Federal structure and distribution of legislative and financial powers between the Union and the States
- 8. Parliamentary Form of Government in India The constitution powers and status of the President of India
- 9. Amendment of the Constitutional Powers and Procedure
- 10. The historical perspectives of the constitutional amendments in India
- 11. Emergency Provisions: National Emergency, President Rule, Financial Emergency
- 12. Local Self Government Constitutional Scheme in India
- 13. Scheme of the Fundamental Right to Equality
- 14. Scheme of the Fundamental Right to certain Freedom under Article 19
- 15. Scope of the Right to Life and Personal Liberty under Article 21

Kavayitri Bahinabai Chaudhari

NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.)

Third Year Engineering

(Civil Engineering)

Faculty of Science and Technology

NAAC Re-Accredited 3rd Cycle

COURSE OUTLINE

Semester - VI

W.E.F. 2020 – 21

			Teaching	Scheme			E	valuatior	n Scheme			
						The	ory	Prac	tical/Oral			
Name of the Course	Group	Theory	Tutorial	Practical						Total	Credits	
		Hrs / week	Hrs / week	Hrs / week	Total	ISE	ESE	ICA	ESE			
		week	week	week								
PCC CE303 Structural Engineering	D	3	-	-	3	40	60	-	-	100	3	
PCC CE306: Environmental Engineering	D	3	-	-	3	40	60	-	-	100	3	
PCC CE307 Transportation Engineering	D	3	-	-	3	40	60	-	-	100	3	
PEC Professional Elective course II	E	3	-	-	3	40	60	-	-	100	3	
OEC Open Elective Course II	F	3	-	-	3	40	60	-	-	100	3	
PCC CE 303 Structural Engineering Lab	D	-	-	2	2	-	-	25	25 OR	50	1	
PCC CE 306 Environmental Engineering Lab	D	-	-	2	2	-	-	25	25 OR	50	1	
PCC CE 307 Transportation Engineering Lab	D	-	-	2	2	-	-	25	-	25	1	
PROJ Minor Project Stage II	G	-	-	6	6	-	-	50	25 OR	75	3	
Internship [*]	н	-	-	-	-	-	-	-	-	-	-	
	•	15		12	27				75	700	21	

Syllabus Structure for Third Year Engineering (Semester – VI) (Civil)

Professional Elective Course II	Open Elective Course II
Building construction practice	Intelligent transportation system
Railway Engineering	Smart city planning
Construction Equipments and Automation	Numerical methods of analysis

^{*}It is a mandatory non-credit course. It will be during Summer Vacations after Semester VI. The satisfactory completion report of internship should be submitted to the University at the end of the semester VIII

	Structural Engineering								
COURSE OUTLINE									
Course	rse Structural Engineering Short SE Course								
Title:				Title:		Code:			
Course	descriptio	on:		1					
The prin	nary aim	of this course is t	o provide an intro	duction	to the analy	ysis and d	lesign of		
reinforce	ed concret	e structures, by lim	it state method con	forming	to IS 456:2	2000 and a	lesign of		
steel stru	ictures thr	ough the use of the	e Indian Standard (I	IS 800:2	007) design	code. Th	e course		
covers d	esign of v	arious elements viz	. beams, slabs, colu	mns, and	d footing in	RCC. It a	lso deals		
with the	design of	f steel members an	d connections, suc	h as, the	e design of	riveted/bo	olted and		
welded	connection	ns, design of tensi	on members, com	pression	members,	beams, an	nd beam		
columns;. It equips the students with the tools necessary for designing steel structures and to									
familiari	familiarize them with the relevant national design code.								
Lecture		Hours/week	No. of weeks	Total l	ours	Semester	r credits		
		03	14	13		03			

	03	14	43	03				
Prerequisite course(s):								
Nil								

Course objectives:

The primary course objective is to equip the students with the tools necessary for designing Concrete structures and to familiarize them with the relevant national design codes such as IS 456:2000. Also this course is to serve as an introduction to the concepts in structural steel design through the use of the Indian Standard IS 800:2007 design code. It deals with the concepts of various limit states such as limit state of collapse, serviceability and durability etc. It covers design of various components of structure. It also deals with analysis and design of individual members and connections such as the design of tension members, compression members, beams, and beam columns; and bolted and welded connections, etc. The primary course objective is to equip the students with the tools necessary for designing steel structures and to familiarize them with the relevant national design codes.

Course outcomes:

After successful completion of this course the student will be able to:

- Understand various design philosophies for reinforced concrete structures including limits states of collapse, serviceability, durability, characteristics strength, characteristics load, partial safety factors for material and loads. Concept of singly and doubly reinforced beams and flange sections.
- \circ To be able to design one way and two way slabs and beams.
- To be able to design various components of structures such as columns, footings Staircase
- \circ . To know about bolted and welded connections. Analysis and design of tension members.
- To be able to analyze concept and design of compression members, column bases and built up columns.

		COURSE	CONTENT				
Structural Designing			Semester:	VI			
Teaching Scheme:			Examination scheme				
Lectures:	3 hour	s/week	End semester e	60 marks			
				Duration of ESE:			
			Internal Sessio	40 marks			
Unit–I: No. of Lect			ures: 09 Hours Marks:		12		

Introduction to various design philosophies of R.C structures, working stress method, ultimate load method, limit state method, limit state of collapse, limit state of serviceability, limit state of durability, characteristic strength, characteristic load, partial safety factors for material strengths and loads, structural properties of concrete.

Limit state method for flexure, Assumptions, stress &strain diagram, Balanced, under reinforced & over reinforced RC sections, analysis and design of rectangular section, analysis and design of doubly reinforced sections, analysis and design of flanged sections.

Unit–II:	No. of Lectures: 09 Hours	Marks: 12

Design of beams for flexure, shear and bond: Simply supported, cantilever beams & continuous beams using IS code coefficient method.

Design of slabs: One way simply supported, cantilever slab & continuous slab, two way simply supported & continuous slabs.

Unit–III:	No. of Lectures: 08 Hours	Marks: 12

Design of Columns and Footing: Introduction, strain and stress variation diagrams, axially loaded short column with minimum eccentricity requirements, Design of short column for axial load.

Design of isolated pad footing for axial load & uniaxial bending. Design of RCC dog legged staircase.

Unit–IV:	No. of Lectures: 08 Hours	Marks: 12

Introduction to Steel Structures: Types of steel structures, grades of structural steel, various rolled steel sections, Limit state method of design for strength and serviceability, partial safety factor for load and resistance, various design load combinations, Strength of bolted & welded Connections, Design of connections subjected to Axial Forces & Moments.

Tension members: Behaviour, Modes of failure– Yielding of cross-section, Net section Rupture, block shear. Design of single and double angle sections with gusset plate with bolted and welded end connections.

Behaviour of Compression member– effective length, and slenderness ratio, Modes of failurefailure with full strength, local buckling, and torsion buckling. Classification of cross sections, Buckling curves. Design of compression members with bolted and welded connection using single and double angle sections.

Built up Column and Column Bases: Design of lacing. Introduction to battened column, design of connections, Column bases under axial load: design of slab base, gusseted base.

Text Books:

 Pillai Menon ,Reinforced Concrete Design, Tata Mc Graw Hill, New Delhi., 3rdedition 2013
 Duggal S. K.,Limit State Design of Steel Structures, Tata Mc Graw Hill publishing company Ltd., New Delhi, 3rd Edition, 2009

Reference Books:

1) B. C. Punmia, Ashok Kr. Jain, Arun Kr. Jain, Limit State Design of Reinforced Concrete, Laxmi Publication, 1st edition 2007

2) P. C. Varghese ,Limit State Design of Reinforced Concrete, PHI, 2nd Edition2006

3) S. Ramamrutham, R. Narayan, Design of Reinforced Concrete Structures (conforming to IS 456), Dhanpat Rai Publication, 7th Edition 2013

4) Dr. V. L. Shah and Dr. S. R, Limit State Theory and Design. Karve, Pune Vidharthi Gruh Publication, Pune, 6th Edition

5) P. Dayaratnram, Limit State Analysis and Design, Wheeler Publishing company, Delhi.,12th edition 2009

6) Subramanian N., Design of Steel Structures., Oxford University Press, New Delhi, 2008

7) Shah V. L. &Gore, Limit state design of Steel Structure, Structures Publication, Pune, 5th Edition.

8) Bhavikatti S. S ,Design of Steel Structure by Limit State Method as per IS: 800-2007., I K International Publishing House, New Delhi, 3rd Edition

9) Ram Chandra, Design of Steel Structures Vol.I& Vol.II, Standard Book House, New Delhi,10th Edition, 2011

	Environmental Engineering								
	-		CO	URSE OU	TLIN	E			
Course	Envir	onmental En	gineering			Short	EE	Cours	e
Title:						Title:		Code:	
Course of	descrip	tion:							
This cou	irse app	rises a gradu	ate student	t with the i	mporta	ance of	water su	pply and	wastewater
engineeri	engineering. The syllabus includes population forecast, assessment of design periods of water								
treatmen	t and	wastewater	treatment	facilities,	their	design	, commi	issioning,	operation,
maintena	ance, tro	ouble shooting	g and augm	entation, w	ater su	pply an	d wastew	ater carria	ge network

design, importance and scope of sanitation.

Lecture	Hours/week	No. of weeks	Total hours	Semester credits			
	3 hour /week	12	36	3			
Prerequisite course(s):							

Course objectives:

The basic objective of the course is to make aware a student about importance, scope and methods of water treatment process and sewage treatment process. The student must know the sources of water contamination and mechanism of nature's self cleaning. It is also aimed to technically train a student to be able to provide sanitation to localities and to provide a safe and health ambience to the residents.

Course outcomes:

After successful completion of this course the student will be able to:

1. Understand the importance of water quality, sanitation and health.

- 2.To know the water quality parameters of significance and parameters of water pollution assessment
- 3. To know the methods of water treatment process, their design, operation and

maintenance.

- 4. To know the wastewater sources, mechanism of water pollution. and self purification capacity of environment.
- 5. To be able to design the wastewater treatment facilities and to do their operation and maintenance.

		COURSE	CONTENT		
Environmental engine	ering		Semester:	VI	
Teaching Scheme:			Examination s		-
Lectures:	3 hour	s/week	End semester exam (ESE):60 m		
			Duration of ES	SE:	03 hours
			Internal Sessio	onal Exams (ISE):	40 marks
Unit–I:			res: 09 Hours	Marks: 1	
Importance of water qu	ality an	d its relation wit	h public health,	sources of water cor	ntamination,
objectives of water treat	tment.				
Factors affecting water	deman	d. population fo	recast by arithm	etic, geometric and	incremental
-		• •			
methods, fire water asse					
Physical chemical and b	piologica	al parameters in v	water and their ex	xamination.	
Sources of water and the	eir wate	r quality.			
Unit–II:		No. of Lectu	res: 09 Hours	Marks: 1	12
Conventional water trea	atment s	chemes for river	, lake, open well	l and tube well water	c. Theory of
plain sedimentation, des	sign of r	ectangular plain	sedimentation ta	nks.	
Theory of chemical coa	agulation	n, jar test for op	timum coagulant	dose, quality criteri	a of a good
coagulant, features of	static a	nd mechanical t	flocculator conc	ent of SOR and w	eir loading
-				-	-
features and design of o		•	•••	-	-
filters, back washing p	rocess, o	common disinfed	ctants and select	ion of best option, c	hemistry of
chlorine in water, brea	k point	chlorination, res	sidual chlorine,	types of chlorination	ı, bleaching
powder chemistry.					
Unit-III:		No. of Lectu	res: 08 Hours	Marks: 1	12
Hardness in water, effe	cts, Soft	tening of water b	y lime soda proc	cess: chemistry, recar	rbonization,

demineralization, necessity of aeration of water, theory of aeration, methods of aeration. Use of

copper sulfate in water treatment, introduction to de-fluoridation and color removal. sources of water pollution, important microorganisms, role of microorganisms in recycling of organic waste, concept self purification of water bodies, parameters of wastewater pollution, determination of DO in water, BOD and COD measurement, concept of MLSS and F/m

Unit–IV:	No. of Lectures: 08 Hours	Marks: 12
Theory of conventional treatm	ont of westowator Introduction	to proliminary treatment and

Theory of conventional treatment of wastewater, Introduction to preliminary treatment and primary treatment unit, their functions and features.

Theory of biological treatment of wastewater, aerobic and anaerobic treatment, Activated sludge process- theory, design by APHA method, MLSSS and F/m ratio method, design of SST, trickling filter- theory, design of high rate TF, concept of extended aeration.

Theory and design of oxidation pond. Sludge generation, handling and introduction to disposal methods.

Unit–V:	No. of Lectures: 08 Hours	Marks: 12
ater intake structures. Valves	in water supply networks pipes n	naterials

Water intake structures. Valves in water supply networks, pipes materials.

Materials used for sewer construction, types of sewers, estimation of domestic sewage, concept of coefficient of runoff, common values of coefficients of runoff, estimation of storm sewage by rational formula, self cleaning velocity, design of sewer using Manning's formula for slope estimation.

Design of septic tanks. Low cost toilets. Anaerobic digestion-theory, working of digester, design parameters.

Text Books:

- 2. Water Supply and Sanitary Engineering, by G. S. Birdie, J. S. Birdie, Dhanpatrai and sons publication.
- 3. Waste Water Engineering by Dr. B.C. Punmia, Ashok Kr. Jain, Arun Kr. Jain, Firewall Media publication
- 4. Water Supply Engineering by Dr. B.C. Punmia, Ashok Kr. Jain, Arun Kr. Jain, Firewall Media publication.
- 5. Water Supply and Sewerage by E. W. Steel and Terence J. McGhee, International Student Edition, McGraw Hill Publications.

Reference Books:

 Wastewater Treatment and Disposal: Engineering and Ecology in Pollution Control by S J Arceivala, Marcel Dekker Inc Publications.

Transportation Engineering

COURSE OUTLINE					
Course	Transportation Engineering	Short	TRE	Course	
Title:		Title:		Code:	

Course description:

Transportation facilities ensure the prosperity, security and integrity of a nation. The present course describes the importance of transportation network, their types, and role of civil engineer in their development. The syllabus is principally focused on highways. The other types of transportation modes are just introduced as they are included in the elective courses. This course enables a student to plan design and execute a roadway project. It introduces complete geometric design and structural design of road pavements using relevant IS codes. It also introduces a student with and traffic engineering so that a student can design a traffic control system for smooth flow of vehicles. The modern trends in roadway engineering are also introduced.

Lecture	Hours/week	No. of weeks	Total hours	Semester credits
	03	14	42	3
Prerequisite cou	rse(s):			
Nil				

Course objectives:

The basic objective of this course is enable a student to plan, design and execute a highway project. The student must be able to carryout required topographic surveys, anticipatory traffic survey, geometric design of the highway, structural design of the pavement using available material and execution of the project. The student must also be able to design traffic signaling network using most advanced technology.

Course outcomes:

After completion of this course an student is expected to be:

- 1. Understand the importance of transportation system in the development of a country, classification of roads and highway planning in India.
- 2. Demonstrate ability to carryout topographic survey required for the road laying.
- 3. Demonstrate ability to decide a road geometry depending upon the anticipatory traffic and Structural design of pavement using IS codes.
- 4. Execution of a highway project.
- 5. Installation, commissioning and maintenance of a advanced signalling system and maintenance of road.

		COURSE	E CONTENT			
			Semester:		VI	
Teaching Scheme:			Examination se	cheme		
Lectures:	3 hour	s/week	End semester exam (ESE):			60 marks
			Duration of ES	SE:		03 hours
		Internal Sessional Exams (ISE):			40 marks	
Unit–I:		No. of Lectur	tures: 09 Hours Marks:			12
Highway development	and pl	anning-Classific	ation of roads,	rural an	d urban roa	ds, road, road
authorities i.e. IRC, CF	RRI, NH	AI etc., road de	evelopment in In	dia, Cur	rent road pro	ojects in India;
highway alignment a	nd proj	ect preparation	Financing of	road pr	ojects, road	safety audit
Reconnaissance, aerial	surveys,	location surveys	, location of brid	ges.		
Unit–II:		No. of Lectur	res: 09 Hours		Marks:	12
Geometric design of h	ighways	-: Introduction; l	highway cross se	ection ele	ements; carri	ageway width,
formation width, right	of way,	etc friction, can	iber, design spee	ed, super	-elevation, tr	ransition curve
,gradients .sight distand	ce, desig	gn of horizontal	alignment; desig	gn of ve	rtical alignm	ent; design of
intersections, problems	Basic re	equirements of a	n ideal alignmen	nt and fa	ctors control	ling it, special

requirements for hill roads .

Unit–III:	No. of Lectures: 08 Hours	Marks: 12
Traffic engineering & control-	Traffic Characteristics, traffic en	ngineering studies, traffic flow and
capacity, traffic regulation and	l control; design of parking faci	lities; highway lighting; problems
traffic flow characteristics, spee	d, traffic volume studies, parking	studies - definition, purpose, types,
survey methods. Accident stud	lies - purpose, types,causes, coll	ision diagram, condition diagram,
preventive measures pavement	nt marking, signs, signals, Traf	fic management, various types of
intersection and their design c	riteria, Traffic Simulation & it's	s advantages, Arboriculture, street
lighting. Classification, mass a	and rapid transit system, introdu	action to intelligent transportation
System (ITS), electronic toll Co	llection.	
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12
Pavement materials- Materials	used in Highway Construction- S	Soils, Stone aggregates, bituminous
binders, characteristics, emulsic	ons and cutbacks, basic tests on a	Il materials, soil investigation, test
on soil; CBR, plate load test.	bituminous paving mixes; Portl	and cement and cement concrete:
desirable properties, tests, requ	irements for different types of p	pavements. Stabilized earth, gravel
roads, W.B.M. roads, high co	st Roads: bituminous roads, ce	ment concrete roads. Surface and
sub-surface drainage arrangement	nts, Numerical Treatment.	
Unit–V:	No. of Lectures: 08 Hours	Marks: 12
Design of pavements- Introduct	tion; flexible pavements, factors	affecting design and performance
Design of pavements- Introduct stresses in flexible pavements	tion; flexible pavements, factors s; design of flexible pavement	affecting design and performance as as per IRC; rigid pavements-
Design of pavements- Introduct stresses in flexible pavements components and functions; fact	tion; flexible pavements, factors s; design of flexible pavement fors affecting design and perform	Marks: 12 affecting design and performance; as as per IRC; rigid pavements- ance of CC pavements; stresses in Maintenance & Strengthening of
Design of pavements- Introduct stresses in flexible pavements components and functions; fact	tion; flexible pavements, factors s; design of flexible pavement fors affecting design and perform ncrete pavements as per IRC,	affecting design and performance; as as per IRC; rigid pavements- ance of CC pavements; stresses in
Design of pavements- Introduct stresses in flexible pavements components and functions; fact rigid pavements; design of co	tion; flexible pavements, factors s; design of flexible pavement fors affecting design and perform ncrete pavements as per IRC,	affecting design and performance; as as per IRC; rigid pavements- ance of CC pavements; stresses in

1. Khanna, S.K., Justo, C.E.G and Veeraragavan, A, 'Highway Engineering', Revised 10th

Edition, Nem Chand & Bros, 2017

2. Kadiyalai, L.R., 'Traffic Engineering and Transport Planning', Khanna Publishers.

3 . Partha Chakraborty, ' Principles Of Transportation Engineering, PHI Learning,

4 . L. R. Kadiyali, N B. Lal, Principles & practice of Highway Engineering, Khanna Publication, 2005.

5 . Rangwala, Highway Engineering, Charotar.

Professional Elective Course II (a)

		Build	ling Construction I	Practices			
			COURSE OUTLI	NE			
Course	Building Construction PracticeShortBCPCourse						
Title:				Title:		Code:	
Course	descriptio	on:			1		
This is a	a basic co	ourse which make	s a student familia	r with th	e detailed	features of	f various
building	componen	nts and appraises a	bout construction p	ractices. 7	The course	includes de	escription
of Type	s of buil	ding structures &	various parts of	building,	Different	types of	masonry.
• •		0	1	\mathcal{O}^{\prime}			
scaffoldi	ng shorir	ng under ninning	and strutting Desc	rintion of	² building	finishes an	d types
	•		and strutting, Desc	-	-		• •
Concrete	e and R.C	C. construction,	Types of foundation	ns, Study	of buildin	g materials	s such as
Concrete	e and R.C	C. construction,	-	ns, Study	of buildin	g materials	s such as
Concrete	e and R.C	C. construction,	Types of foundation	ns, Study	of buildin id absorber	g materials	s such as
Concrete stone, br	e and R.C	C. construction, The construction, The construction, States and St	Types of foundation glass, heat insulating	ns, Study	of buildin id absorber	g materials	s such as
Concrete stone, br Lecture	e and R.C	C. construction, T. ber, Aluminium, g. Hours/week	Гурез of foundation glass, heat insulating No. of weeks	ns, Study g and sour Total I	of buildin id absorber	g materials nt materials Semester	s such as
Concrete stone, br Lecture	e and R.C	C. construction, T. ber, Aluminium, g. Hours/week	Гурез of foundation glass, heat insulating No. of weeks	ns, Study g and sour Total I	of buildin id absorber	g materials nt materials Semester	s such as
Concrete stone, br Lecture Prerequ Nil	e and R.C	C. construction, T. hber, Aluminium, g Hours/week 03 se(s):	Гурез of foundation glass, heat insulating No. of weeks	ns, Study g and sour Total I	of buildin id absorber	g materials nt materials Semester	s such as
Concrete stone, br Lecture Prerequ Nil Course o	e and R.C icks & tim isite cour objectives	C. construction, T nber, Aluminium, g Hours/week 03 se(s):	Гурез of foundation glass, heat insulating No. of weeks	ns, Study g and sour Total P 42	of buildin ad absorber nours	g materials nt materials Semester 3	s such as
Concrete stone, br Lecture Prerequ Nil Course of The stur	e and R.C icks & tim isite cour objectives dent mus	C. construction, T bber, Aluminium, g Hours/week 03 se(s):	Fypes of foundation glass, heat insulating No. of weeks 14	ns, Study g and sour Total H 42	of buildin ad absorber nours mponents	g materials at materials Semester 3 and their	s such as r credits detailed
Concrete stone, br Lecture Prerequ Nil Course of The stur	e and R.C icks & tim isite cour objectives dent mus tional feat	C. construction, T bber, Aluminium, g Hours/week 03 se(s): :: st become aware ures. The students	Types of foundation glass, heat insulating No. of weeks 14 of common bui	ns, Study g and sour Total H 42 Iding con the types	of buildin ad absorber nours mponents of building	g materials nt materials Semester 3 and their gs accordin	s such as r credits detailed g to their

finishing works should also be known.

Course outcomes:

After successful completion of this course a student must be able to:

- 1. Know about types of building structures.
- 2. Various materials used in building construction.
- 3. Constructional features of various components of buildings.
- 4. Finishing and decoration aspects of buildings.
- 5. Execution of a construction work at site.

		COURSI	E CONTENT			
			Semester:		VI	
Teaching Scheme:			Examination s	cheme	I	
Lectures:	3 hour	s/week	End semester of	60 marks		
	I		Duration of ESE:			03 hours
			Internal Sessio	nal Exa	ms (ISE):	40 marks
Unit–I:		No. of Lect	ures: 09 Hours		Marks: 1	2
Types of building, le	oad bearing	g, framed struc	cture, steel structur	re, timbe	er structure,	composite
structure. Various pa	rts of build	ing, sub structu	are and super struc	ture. Plin	nth, sill, floor	r, and roof
level, plinth height, p	linth prote	ction, cornice,	coping and their fu	inction.		
Foundation: Purpos	e and cl	assification,	advantages and	disadva	ntages of	each and
circumstances under	which each	is used. Facto	r considered for se	lection of	of foundation	l.
Specifications, detai	ls and sequ	ence of activiti	es and constructio	n co-ord	ination – Site	e learance -
Marking – Earthwor	k - masoni	y – stone mas	onry – Bond in m	asonry ·	- concrete he	ollow block
masonry – flooring –	damp prod	of courses – co	nstruction joints –	movem	ent and expa	nsion joints
 pre cast pavements 						
Unit–II:		No. of Lect	ures: 09 Hours		Marks: 1	2
Masonry: Principle	of masonry	construction,	, types of masonr	y, types	of wall (lo	ad bearing,
partition, timber part						

Brick and brick masonry: Various types of bond in brick masonry, reinforced brick masonry, precautions to be taken in masonry construction, composite masonry, solid and hollow blocks used for masonry, cavity wall, etc.

Formwork: Function of form work, form erection, oiling and stripping of form, requirements of form and form work, material used for form work.

Building foundations – basements – temporary shed – centering and shuttering – slip forms – scaffoldings – de-shuttering forms – Fabrication and erection of steel trusses – frames – braced domes – laying brick — weather and water proof – roof finishes – acoustic and fire protection.

Unit–III:	No. of Lectures: 08 Hours	Marks: 12				
Types of lintel, detailing of R.C	C.C. lintel, precast lintel and stone	lintel.				
Doors and windows: Type of a	each and circumference under w	hich each is used, minimum				
area of window opening for dif	ferent climatic conditions, variou	s material used for doors and				
window, fixtures and fastening	used. I.S. notations for doors and	windows.				
Circulation: Horizontal and ver	rtical, stair and staircase plannir	ng and design, types of				
staircase as per shape and mater	ial used, type of circulation.					
Floor and roof: Ground floo	or, upper floor, mezzanine flo	or, design and constructional				
requirements, various types of f	loor finishes used, advantage and	disadvantages, special flooring.				
Sub Structure Construction-	Fechniques of Box jacking –	Pipe Jacking -under water				
construction of diaphragm wall	ls and basement-Tunneling techn	niques – Piling techniques -				
well and caisson - sinking coffer	rdam - cable anchoring and grout	ing-driving diaphragm walls,				
sheet piles - shoring for deep cu	tting - well points -Dewatering ar	nd stand by.				
Unit-IV:	No. of Lectures: 08 Hours	Marks: 12				
Steel trusses: Types, Methods	of connections, connecting mater	ials. Scaffolding, shoring, under				
pinning and strutting, their types	s, purposes and precautions.					

R.C.C. framed structure, column, beam, footing, slab and their connections, general requirements and details.

Plant equipment for underground open excavation; Super Structure Construction- Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks

Unit–V:	No. of Lectures: 08 Hours	Marks: 12
Material handling - erecting	g light weight components on tall str	ructures - Support structure fo
heavy Equipment and conv	eyors - Erection of articulated struc	tures, braced domes and spac
decks;		
Stone: Natural bed of stone,	stone quarrying, uses of stones and c	qualities of good building stone
test's on stone.		
Bricks: Composition of goo	d brick earth, classification of burnt	brick, manufacturing of bricks
qualities of good bricks, test	on bricks.	
Timber: Properties and use	es, testing, conservation and sawing	g, defects in timbers, artificia
timber, veneers, plywood an	d block board.	
Other miscellaneous materi	als: Aluminum, glass, heat insulati	ing materials, sound absorben
materials.		
Text/Reference Books:		

- Building Construction by Sushil Kumar- Published by Standard Publishers Distributors, Publication Year2010, ISBN-13 9788180141683, ISBN-10 8180141683, Edition 19.
- Building Construction by S.P. Bindra, S.P. Arora, Published by Dhanpat Rai Publications, Publication Year 2010, ISBN-13 9788189928803, ISBN-10 8189928805.
- Building Construction by Ashok Kr. Jain, B. C. Punmia, Arun Kr. Jain, Published by Laxmi Publications, Publication Year 2009, ISBN-13 9788131804285, ISBN-10 8131804283, Edition 10thEdition.

 Engineering Materials by Rangwala, Publisher Charotar Publishing House, Publication Year 2011, ISBN-13 9789380358260, ISBN-10 9380358261

6. Civil Engineering Material by Dr. S.V. Deodhar.

		Profes	ssional Elective Co	urse II (b))		
			Railway Engineer	ing			
			COURSE OUTLI	NE			
Course	Railway	Engineering		Short	RE	Course	
Title:				Title:		Code:	
Course o	lescriptio	n:					
most pre present s of railwa	ferred trar yllabus de	asportation system escribes scope and ring and execution	nomy. Particularly in having huge poten importance of raily of railway projects	tial to exp vay engin	oand in th	e times to co anning and c	ome. The lesigning
Lecture		Hours/week	No. of weeks	Total k	ours	Semester	r credits
		3	14	42		3	
Prerequ	isite cours	se(s):	1	1		1	
Nil							
Course of	objectives	:					
The cour	rse aim to	train a civil engi	neer in the fundame	entals of r	ailway er	igineering, a	n role of

civil engineer in a railway project the course aims to train a student for planning designing and executing a railway project. The student must also get an exposure towards the new technology getting emerged in the field of railway transport network.

Course outcomes:

After successful completion of this course the student will be able to:

- 1. Understand Role of civil engineers in railway engineering projects.
- 2. To know alignment of track, geometric design of track, creep measurement, construction and maintenance of track.
- 3. To know the point and crossing, signaling systems, welding of rails its suitability.
- 4. Do design & construction of station and yards, safety of running trains.
- 5. Know about construction requirement of High Speed Rail.

		COURSE	CONTENT			
Name of the Subject Ra	ilway E	ngineering	Semester:		V	
Teaching Scheme:			Examination s	cheme		
Lectures:	3 hour	rs/week	End semester of	exam (E	SE):	60 marks
			Duration of ES	SE:		03 hours
			Internal Sessio	nal Exa	ms (ISE):	40 marks
Unit–I:		No. of Lectu	res: 09 Hours		Marks: 1	2
Role of Civil Engineers	s in infra	structure develo	pments, Railway	Track C	Bauge : diffe	rent gauges
on Indian railways, j	problem	s caused by c	hange of gauge	e, Track	k & Track	stresses :
Requirements, forces a	cting or	n tracks, coning	g of wheels, tilti	ng of ra	ils, Sleeper	: function,
requirements types o	of sleep	ers, concrete	sleepers,prestres	sed slee	eper, sleepe	er density,
manufacturing and space	cing of s	sleepers, Ballast	: Function, speci	ifications	s of track ba	llast, Track
fitting and Fastening, subgrade and formation.						
Unit–II:		No. of Lectu	res: 09 Hours		Marks: 1	2
Alignment of railway l	ine: Imp	ortance, basic re	equirements of an	n ideal a	lignment, se	lection of a
good alignment, geom	etric des	sign of track, n	ecessity for geo	metric d	esign, gradi	ents, grade

compensation on curves, super elevation, equilibrium cant, cant deficiency, maximum permissible speed, negative super elevation, engineering survey and construction of new lines Resistance to traction, resistance to friction, wave action, causes of creeps, effects of creep, measure to reduce creep, Construction and track maintenance plate laying method, operation involved tools and common items of track maintenance, Modern method of track maintenance.

Unit–III:	No. of Lectures: 08 Hours	Marks: 12
Points and Crossing : Necessi	ty, important terms, types of tra	ck layout, sketches of turnout,
diamond crossing, triangle, d	ouble junction, scissors cross of	over, Single slip, double slip,
gathering line, Classification of	of signal, CTC and ATC system,	interlocking and its principles
Welding of rails, advantages of	welding of rails, methods of weld	ing.
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12
Railway stations and yards :	classification of railway station	s, purpose of railway station,
selection of site for railway	station, facilities required at rat	lway station, types of station
platforms : types and its detaili	ng, Yards: types ,important point	s to be considered in the design
of marshalling yards, essential	requirement of locomotive yard	s, Signaling : objective, types,
classification, Interlocking defin	nition, principal of interlocking, m	ethod of interlocking, Safety of
the running trains with respect t	o signaling and interlocking.	
Unit–V:	No. of Lectures: 08 Hours	Marks: 12
High Speed Rail Engineering	(HSR), types of railways, high	n speed improvements in track
structure, Key elements of HS	SR system, Introduction to sky-	ous, monorail and metro rails,
Construction of HSR stations.		
Text Books:		
1. Rail Engineering : by Sa	atish Chandra, M Agarwal, OXFC	ORD University Press
2 Pail Track Engineering	· I S Mundrey Mc Graw Hill Pu	blications

- 2. Rail Track Engineering ; J. S. Mundrey, *Mc Graw Hill Publications*
- 3. Rail Engineering : by Saxena and Arora, Dhanpat Rai Publication
- 4. Railway Engineering : by Rangwala , CHAROTAR Publishing House Pvt. Ltd.

Reference Books:

- 1. Modern Railway Engineering Consultation: Methods And Practices by Zhu Ying and Chen Lie, World Scientific Publishing Company.
- High Speed Railway Track Dynamics: Models, Algorithms and Applications by Lei, Xiaoyan, Springer Publications.

	Professional Elective Co	urse II (c))	
	Construction Equipment &	Automat	tion	
	COURSE OUTLI	NE		
Course	Construction Equipment & Automation	Short	CEA	Course
Title:		Title:		Code:
Course	description:			

Civil engineering projects have two distinct aspects: design and execution. The design is an office job. It can be done on paper or using a computer. However execution is a field job. It requires management and administration of resources and use of labor. Earlier most of the jobs were done manually. Now human beings are being replaced by machine due to their higher capacity, higher efficiency, higher speed and even low cost. In fact most of the modern meg size projects cannot be done without aid of machines. Hence a civil engineer must have knowledge of machines used for mega construction project. He/she must have skill to utilize them skillfully and achieve economy thereby. The present course is designed to meet this requirement. Further,

present era is an era of automation. The machines are working with digital interface. The automation has entered into each and every aspect of construction. This course describes the importance and scope of automation to students.

Lecture	Hours/week	No. of weeks	Total hours	Semester credits
	3	14	42	3

Prerequisite course(s):

Nil

Course objectives:

The student must know the various advanced construction equipments being used in the various construction activities. The student must know to use them efficiently and optimally. s/he must know the significance, definition, scope, history and objectives of automation at construction sites. s/he msu be aware of various software pertaining to construction automation and their applications. s/he must know about use of robotic technology in construction and repair/maintenance activity. Students must also know the various types of robots commonly being deployed for construction activities.

Course outcomes:

After successful completion of this course the student will be able to:

- 1. Demonstrate awareness about importance, scope and application of various construction machines.
- 2. Demonstrate importance of construction automation.
- 3. Student must be able to apply a correct machine for a specific construction task and get optimal output of the same.
- 4. Student must know about importance of construction automation and software pertaining to it. S/he must be able to use them.
- 5. Student must know about the robots being used for critical construction tasks and must be able to deploy them as per need.

COURSE CONTENT

Construction Equipm	ent & Automation	n Semester:	VI	
Teaching Scheme:		Examination s	cheme	
Lectures:	3 hours/week	End semester o	exam (ESE):	60 marks
	I	Duration of ES	SE:	03 hours
		Internal Sessio	onal Exams (ISE):	40 marks
Unit–I:	No. of	Lectures: 09 Hours	Marks:	12
Conventional constru	ction methods:	Introduction, Convention	ional construction	methods Vs
Mechanized methods, a	dvantages of mec	hanized methods, Equip	oment for Earthmov	ving- types of
earthmoving equipment	, excavators (drag	glines, dredging, front sl	hovel), loaders(skij	p loaders and
wheel loaders), constru-	ction tractors (scra	aper, material handler), e	etc.	
Unit–II:	No. of	Lectures: 09 Hours	Marks:	12
		. Factors Affecting Cl		nts. Type of
Dewatering Equipme	nts: Introduction,	, Factors Affecting Cl	noice of Equipmen	
Dewatering Equipme Dewatering Equipment	nts: Introduction, s, Concrete Mixir	, Factors Affecting Cl ng: Method of Concrete	noice of Equipmen	
Dewatering Equipme Dewatering Equipment Mixing, Type Of Conce	nts: Introduction, s, Concrete Mixir rete Mixer.	ng: Method of Concrete	noice of Equipment	For Concrete
Dewatering Equipment Dewatering Equipment Mixing, Type Of Conce Transporting and Pla	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o	ng: Method of Concrete	hoice of Equipment de Mix, Equipment de Mix, Equipment de s, Barrows (wheel	For Concrete barrows and
Dewatering Equipme Dewatering Equipment Mixing, Type Of Conce Transporting and Pla power barrows), Dum	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o	ng: Method of Concrete	hoice of Equipment de Mix, Equipment de Mix, Equipment de s, Barrows (wheel	For Concrete barrows and
Dewatering Equipment Dewatering Equipment Mixing, Type Of Conce Transporting and Pla	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o	ng: Method of Concrete	hoice of Equipment de Mix, Equipment de Mix, Equipment de s, Barrows (wheel	For Concrete barrows and
Dewatering Equipme Dewatering Equipment Mixing, Type Of Conce Transporting and Pla power barrows), Dumy Trimie,etc.	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o pers, Monorail sy	ng: Method of Concrete of transportation- Chute ystem, Elevating Towe	hoice of Equipment e Mix, Equipment b s, Barrows (wheel rs and hoists, Belt	For Concrete barrows and t Conveyors,
Dewatering Equipme Dewatering Equipment Mixing, Type Of Conce Transporting and Pla power barrows), Dum	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o pers, Monorail sy	ng: Method of Concrete	hoice of Equipment de Mix, Equipment de Mix, Equipment de s, Barrows (wheel	For Concrete barrows and t Conveyors,
Dewatering Equipment Dewatering Equipment Mixing, Type Of Conce Transporting and Pla power barrows), Dumy Trimie,etc. Unit–III:	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o pers, Monorail sy No. of	ng: Method of Concrete of transportation- Chute ystem, Elevating Towe	noice of Equipment e Mix, Equipment b s, Barrows (wheel rs and hoists, Belt Marks:	For Concrete barrows and t Conveyors, 12
Dewatering Equipment Dewatering Equipment Mixing, Type Of Conce Transporting and Pla power barrows), Dumy Trimie,etc. Unit–III: Plastering Machines:	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o pers, Monorail sy No. of Introduction, need	ng: Method of Concrete of transportation- Chute ystem, Elevating Towe	noice of Equipment e Mix, Equipment b s, Barrows (wheel rs and hoists, Belt Marks: of plastering machin	For Concrete barrows and t Conveyors, 12 nes.
Dewatering Equipment Dewatering Equipment Mixing, Type Of Conce Transporting and Pla power barrows), Dumy Trimie,etc. Unit–III: Plastering Machines:	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o pers, Monorail sy No. of Introduction, need d Grouting: Desc	ng: Method of Concrete of transportation- Chute ystem, Elevating Towe Lectures: 08 Hours of plastering, working cription of Prestressing	noice of Equipment e Mix, Equipment b s, Barrows (wheel rs and hoists, Belt Marks: of plastering machin	For Concrete barrows and t Conveyors, 12 nes.
Dewatering Equipment Dewatering Equipment Mixing, Type Of Conce Transporting and Pla power barrows), Dumy Trimie,etc. Unit–III: Plastering Machines: Prestressing Jacks an	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o pers, Monorail sy No. of Introduction, need d Grouting: Desc	ng: Method of Concrete of transportation- Chute ystem, Elevating Towe Lectures: 08 Hours of plastering, working cription of Prestressing	noice of Equipment e Mix, Equipment b s, Barrows (wheel rs and hoists, Belt Marks: of plastering machin	For Concrete barrows and t Conveyors, 12 nes.
Dewatering Equipment Dewatering Equipment Mixing, Type Of Conce Transporting and Pla power barrows), Dumy Trimie,etc. Unit–III: Plastering Machines: Prestressing Jacks an	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o pers, Monorail sy No. of Introduction, need d Grouting: Desc Grouting, Groutin	ng: Method of Concrete of transportation- Chute ystem, Elevating Towe Lectures: 08 Hours of plastering, working cription of Prestressing	noice of Equipment e Mix, Equipment b s, Barrows (wheel rs and hoists, Belt Marks: of plastering machin	For Concrete barrows and t Conveyors, 12 nes. tressing Jack
Dewatering Equipment Dewatering Equipment Mixing, Type Of Conce Transporting and Pla power barrows), Dumy Trimie,etc. Unit–III: Plastering Machines: Prestressing Jacks an mechanism, Process of Unit–IV:	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o pers, Monorail sy No. of Introduction, need d Grouting: Desc Grouting, Groutin	ng: Method of Concrete of transportation- Chute ystem, Elevating Towe Lectures: 08 Hours of plastering, working cription of Prestressing ng equipments.	Marks: Marks:	For Concrete barrows and t Conveyors, 12 nes. tressing Jack 12
Dewatering Equipment Dewatering Equipment Mixing, Type Of Conce Transporting and Pla power barrows), Dumy Trimie,etc. Unit–III: Plastering Machines: Prestressing Jacks an mechanism, Process of Unit–IV: Cranes, Hoists and ot	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o pers, Monorail sy No. of Introduction, need d Grouting: Desc Grouting, Groutin No. of her equipment for	ng: Method of Concrete of transportation- Chute ystem, Elevating Towe Lectures: 08 Hours of plastering, working cription of Prestressing ng equipments. Lectures: 08 Hours	noice of Equipment e Mix, Equipment I s, Barrows (wheel rs and hoists, Belt Marks: of plastering machin and Grouting, Pres Marks: , types of mobile C	For Concrete barrows and t Conveyors, 12 nes. tressing Jack
Dewatering Equipment Dewatering Equipment Mixing, Type Of Conce Transporting and Pla power barrows), Dumy Trimie,etc. Unit–III: Plastering Machines: Prestressing Jacks an mechanism, Process of Unit–IV: Cranes, Hoists and ot Crane, Lifting Accessor	nts: Introduction, s, Concrete Mixir rete Mixer. cing : methods o pers, Monorail sy No. of Introduction, need d Grouting: Desc Grouting, Groutin No. of her equipment for ries, Lifting equipt	ng: Method of Concrete of transportation- Chute ystem, Elevating Towe Lectures: 08 Hours of plastering, working or plastering, working ag equipments. Lectures: 08 Hours or lifting: mobile crane	noice of Equipment e Mix, Equipment I s, Barrows (wheel rs and hoists, Belt Marks: of plastering machin and Grouting, Pres Marks: , types of mobile C Equipment.	For Concrete barrows and t Conveyors, 12 nes. tressing Jack 12 ranes, Hoists

Unit–V:	No. of Lectures: 08 Hours	Marks: 12					
Equipment Productivities: definition of productivity, role of productivity concept in							
Construction, Ways to increase	Construction, Ways to increase productivity in construction field. Use of Drones for spread out						
sites; Use of robots for repetitiv	e activities.						
Text Books:							
1. Construction Planning, I	Equipment and Methods By R L P	EURIFOY, C J Schexnayder					
and A V Shapira, Mc Gi	raw Hill publication.						
2. Construction Equipment	t and Its Management by S C Shar	ma, Khanna Publications.					
Reference Books							
1. Modern Construction Ec	quipment and Methods by Frank H	Iarris, Longman Publications.					
2. Materials Handling By I	David E. Mulchay, McGraw Hills	Publications					

Open Elective Course II (a)							
Intelligent Transportation System							
	COURSE OUTLIN	E					
Course	e Intelligent Transportation System Short ITS Course						
Title:		Title:		Code:			
Course	description:	-1					
Transpor	tation sector has got radically revolutionized	in past	two deca	des. New modes o			
transport	ation facilities have emerged up. At the same	e time t	he conver	ntional transportation			
facilities	have also got techno-savvy. Safety, comfort and	l speed a	s well as	economy are ensured			
by the intelligent transport system. An intelligent transport system is achieved by the aid of							
modern	technology like GPS, GIS, and internet and au	tomation	facilities	. The present course			
describes	s the importance scope and applications of intellig	gent tran	sport syste	em. It trains a studen			

Lecture	Hours/week	No. of w	eeks	Total	hours	Semes	ster credits
	03	1	4		42		03
Prerequisite c	ourse(s):						
Nil							
Course object	ives:						
1. To lear	n about Intelligent T	ransportation	system				
2. To stud	ly the concepts of GI	S (Geographi	cal Inform	nation Sy	/stem)		
3. To illus	strate Advanced Rura	al Transportat	ion Syste	ems (ART	S) with	its need.	
Course outcou	nes:						
After successfu	ul completion of this	course the stu	dent will	l be able	to:		
1. Unders	tand the revolutionar	y changes goi	ing on in	the trans	portatio	n system.	
2. Demon	strate ability to plan	an intelligent	transport	tation sys	tem		
3. Demon	strate ability to desig	gn an intellige	nt transpo	ortation s	ystem		
4. Apply	knowledge to mainta	in an existing	intellige	nt transpo	ortation	system.	
5. Apply	knowledge to upgrad	le an existing	intelligen	ıt transpo	rtation s	system.	
		COURSE	CONTE	NT			
Name of the S	Subject: INTELLIG	ENT	Semest	er:		VI	
TRANSPORT	TATION SYSTEM						
Teaching Sch	eme:		Examir	nation sc	heme		
Lectures:	3 hours/w	veek	End semester exam (ESE):			SE):	60 marks
	I		Duratio	on of ES	E:		03 hours
			Interna	al Sessior	nal Exa	ms (ISE):	40 marks
	•. •	No. of Lectur	res: 09 H	Iours		Marks: 1	12
Un	uit—I:	Little of Little					
	iit–I: Intelligent Transpor			– Definit	ion of I	TS and Iden	tification o
Introduction to		rtation Systen	ns (ITS)				

Unit–II:	No. of Lectures: 09 Hours	Marks: 12
Geographic Information Syst	tems (GIS)-Introduction to C	GIS Systems ,Need of GIS
System, Application of GIS System	em, video data collection.	
Telecommunications in ITS – In	mportance of telecommunications	s in the ITS system, Information
Management, Traffic Manageme	ent Centers (TMC), National traffic	c control centre (NTCC) Vehicle
- Road side communication - V	ehicle Positioning System.	
Unit–III:	No. of Lectures: 08 Hours	Marks: 12
	ced Traffic Management System	
	ommercial Vehicle Operations (C	
•	blic Transportation Systems (APT	
	1 2 1	,
Unit–IV:	No. of Lootungs 09 Houng	Marks: 12
	No. of Lectures: 08 Hours	
_	a Systems (ARTS); ITS User Ne	
Traffic management, Public	Fransportation Management, Ele	ectronic Payment, Commercial
Vehicle Operations, Emergency	y Management, Advanced Vehic	cle safety systems, Information
Management		
	1	
Unit–V:	No. of Lectures: 08 Hours	Marks: 12
	- Vehicles in Platoons - Integ	
Systems. ITS Programs in the V	Vorld – Overview of ITS impleme	entations in developed countries,
ITS in developing countries.		
Text Books / Reference Books:	:	
1. Intelligent Transport Sy	stems: Technologies and Applic	cations by Ignacio Julio García
Zuazola, Enrique Onieva	a, Unai Hernandez-Jayo, Asier Pe	rallos, Wiley Publications.
2. Geographical Informatio	on Systems Simplified: GIS by, G	ofamodimo Mashame, available
on Amazon.		
3. Transportation Engineer	ing and Planning by C. S. Papa	acostas and P. O. Prevedouros,
Pearson Publications.		

Open Elective Course II (b)								
		Numerical	Methods in Civil F	Enginee	ring			
		C	COURSE OUTLIN	Έ				
Course	Numeric	al Methods in Civil	Engineering	Short	NMCE	Course		
Title:				Title:		Code:		
Course	descriptio	n:		•				
The nur	merical m	ethods course inv	olves solving eng	ineering	problems	from all	fieldsof	
engineer	ing. Cours	se will cover the fur	ndamental topics in	numeric	cal methods	such as n	umerical	
integrati	on, differe	ntiation and numeri	cal linear algebra, s	solution	of nonlinear	algebraic	systems	
and solu	tion of o	rdinary and partial	differential equati	ions, cu	rve fitting,	interpolat	ion. The	
student will be familiar in using numerical tools to solve problems in their own field of interest.								
Lecture		Hours/week	No. of weeks	Total h	ours	Semeste	r credits	
		03	14	42		3		
Prerequ	isite cour	se(s):						

Nil

Course objectives:

To introduce students to the mostly used numerical methods in different engineering fields. The aim is to study and apply various numerical methods such as Gaussian Elimination Method, Gauss Jordon Method, Method of Bisection, Method of false position, Newton Raphson Method, Method of Simple Iteration, Method of Least Square, Newton Interpolation, Lagrange Interpolation, Euler's Method, Modified Euler's Method, Runge Kutta Method and develop program for the same.

Course outcomes:

After successful completion of this course the student will be able to:

- o Solve an algebraic or transcendental equation using an appropriate numerical method
- Solve a differential equation using an appropriate numerical method and evaluate a derivative at a value using an appropriate numerical method
- Solve a linear system of equations using an appropriate numerical method
- Perform an error analysis for a given numerical method
- Code a numerical method in a modern computer language.

		COURSE	CONTENT		
Numerical Metho	ods in Civil En	gineering	Semester:	VI	
Teaching Schem	e:		Examination se	cheme	
Lectures:	3 hour	s/week	End semester exam (ESE): 60 m		
			Duration of ES	SE:	03 hours
			Internal Sessio	nal Exams (ISE):	40 marks
Unit–	I:	No. of Lect	ures: 09 Hours	Marks:	12
a)Introduction:	Mathematical	Modelling and	Engineering Prob	lem Solving, Algor	ithmDesign,
Flowchart, Errors	in Numerical	Computation.			
b)Solution of	Linear algeb	oraic Equatio	n: Gauss Elimi	nation method, Ga	auss Seidel
method,Gauss Jon	rdan method, P	artial Pivoting	method and its con	nditions for converge	ence.

Unit–II:	No. of Lectures: 09 Hours	Marks: 12
a)Solution of Non Linear Alg	gebraic and Transcendental Equ	ations: Bisection, Falseposition,
Newton Raphson Method, Gen	eralized Newton Raphson Method	l.
b)Linear Programming Pro	blem: Introduction, Requiremen	ts, Assumptions, Applications,
Limitations, General Mathema	tical Model, Formulations, Introdu	ction to Artificial Variables,
Simplex Algorithm for Maxim	ization & Minimization Cases.	
Unit–III:	No. of Lectures: 08 Hours	Marks: 12
a)Curve Fittings: Linear	Regression, Polynomial F	Regression, Multiple Linear
Regression, General Linear Lea	st Squares, and Engineering Appli	cations of Curve fitting.
b)Interpolation: Newton's di	vided difference interpolating poly	nomials, Non-linear regression
Lagrange Interpolating polynomial	mials, Coefficient of interpolating	polynomials.
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12
a)Numerical Differentiatio	n: High accuracy differenti	ation formula, First order
differentiationEquations, Seco	nd order differentiation Equations	, Derivatives of Equally Spaced
Data.		
b)Numerical Integration: T	rapezoidal rule, Simpson's one	third and 3/8th rule, Gaussiar
Quadrature 2 point Formula.		
Unit–V:	No. of Lectures: 08 Hours	Marks: 12
a)Numerical methods for So	lution of ordinary differential e	quation: Taylor's seriesmethod
Euler's method, Modified Eule	er's method, Runge Kutta method,	Predictor Corrector Method.
b)Numerical methods for So	olution of Partial Differential E	quation: Introduction to initia
	lem Finite difference methods for	the solution of one dimensiona
value and boundary value prob	fem, i mite difference methods for	
• •	l (parabolic and elliptic) and highe	er order PDE.
• •		er order PDE.
• •		er order PDE.

Private Limited, 2000

2. Sharma J.K., "Operation Research", MACMILLAN India Limited, 2003

3. Jain, Iyenger & Jain, "Numerical Methods", New Age Publishing Company, New Delhi, 2004

4. Sastry S.S., "Introductory Methods of Numerical Analysis", Prentice Hall (India) Limited,

New Delhi, 2000.

Reference Books:

1. Steven C Chapra & Raymond P. Canale, "Numerical Methods for Engineers", Tata Mc-Graw Hill Company Limited, New Delhi, 2002

2. Schilling & Harries, "Applied Numerical Methods for Engineers", THOMSON, Brooks/Cole, New York, 2000.

	Оре	n Elective Course	e II (c)			
	SMA	RT CITY PLA	NING			
		COURSE OUTL	INE			
Course	SMART CITY PLANNING		Short SCP		Course	
Title:			Title:		Code:	
Course	lescription:					
This cou	rse introduces the students al	bout concepts such	as:			
•	Scope of Smart city planning	g in civil Engineeri	ng society	.		
•	Importance of smart city pla	nning for large scal	le work.			
•	Principles of smart city and i	its techniques.				
Lecture	Hours/week	No. of weeks	Total	hours	Semester credits	
	03	14	42		03	
Prerequ	isite course(s):		1			

Course objectives:

_

- To introduce the theory of smart city planning in civil engineering works.
- Apply the Smart city planning techniques in fields.

Course outcomes:

After successful completion of this course the student will be able to:

- Know the importance and scope of smart city planning.
- Know the principles of smart city planning.
- Know the Apply his/her knowledge for planning and designing a smart city.
- Demonstrate ability transform a given city into smart city.
- Assess the parameters of a smart city.

			COURSE	CONTENT		
SMAR	MART CITY PLANNING			Semester: VI		
Teach	ing Scheme:			Examination so	cheme	
Lectur	res:	3 hour	s/week	End semester e	exam (ESE):	60 marks
				Duration of ESE:		03 hours
	Internal Sessional Exams (ISE):			nal Exams (ISE):	40 marks	
τ	Unit–I: Smart city	y:	No. of Lectu	res: 09 Hours	2	
a)	What is smart ci	ty? Futu	re of smart city			
b)	Objectives, princi	ples, stag	ges in to smart city	y planning.		
c)	Growth of city an	d theories	s of developments	s (ribbon, sector zo	one, concentric, multip	le zone etc)
d)	Planning and role	in urban	development, Sm	nart city planning so	chemes.	
Unit-II: Concept of master No. of		No. of Lectu	res: 09 Hours	Marks: 12		
	plan :					
a)	Structure plan, de	tailed sm	art city planning	scheme and action	plan.	
b)	Estimating future	e needs,	planning standar	ds for different la	and use allocation for	commerce,
industries, public amenities, open areas etc.						

- C) Planning standards for density distributions, density zones.
- d) Planning standards for traffic network ,standard of roads , Plan implementation.

Unit–III: Smart City planning	No. of Lectures: 08 Hours	Marks: 12
legislations and municipal acts		

- a) Planning of control development schemes and urban financing.
- b) land acquisition ,slum clearance schemes ,pollution control aspects.
- c) Study of Smart cities. (infrastructure, disaster management, etc.)

Unit–IV: City development	No. of Lectures: 08 Hours	Marks: 12
plan		

- g) City development plans Scope & purpose, Surveys- demographic, housing, land use, ws & sanitation, etc.
- h) Traffic: transport- urban road objectives, classification, traffic management.
- i) Legislative mechanism: planning agencies for various levels of planning. Their organization and purpose.

Unit-V: Environmental	No. of Lectures: 08 Hours	Marks: 12
Studies in Building Science		
a a		

- f) Components of Ecosystem: ecological principles concerning environment, climate.
- g) Responsive design: Energy efficient building design; thermal comfort; solar architecture.
- h) Acoustics: Concepts of Acoustic, noise pollution & its control.

Text Books:

- 1. UDPFI guidelines, ministry of urban affairs and employment, Govt. & India.
- 2. Koenigsbeger, "Manual of tropical housing and building", Universities Press (India)
- 3. Sustainable Building Design Manual: Sustainable Building Design Practices, 2009 by TERI

Reference Books:

- 1. G.K .Hiraskar , "Town planning", Dhanpatrai Publication 2002
- 2. S. Rangwala, "Town planning", Charotar Publishing House Pvt. Ltd., 2009
- 3. G Muthu, Shobha, Mohan, "Principles of Architecture "2006

4. MRTP act 1966

5. Shah, Kale, Patki, "Building Drawing", Tata McGraw-Hill Education, 5th edition

6. Gevorkian, "Green Buildings", Mc Graw hill.

7. Haselbach, "The engineering guide to LEED", new construction-sustainable construction for engineers, the McGraw-Hill, 2008.

8. Satish Chandra Agarwala , "Architecture & Town Planning", Dhanpat Rai & Co (P) Ltd.

9. Prakash Apte, "The building of Gandhinagar", Power publishers.

10. Annapurna Shaw, "The making of new Mumbai", Orient Blackswan, 2004

		Stru	ctural En	gineering	g Lab			
		LAI	B COURS	E OUTL	INE			
Structural Engineering Lab LAB COURSE OUTLINE Course Structural Engineering Lab Short SEL Course Title: Code: Code: Code: Course description: In this Laboratory course emphasis is given on analysis & design of different RCC structure members such as beam, slab, column, footing etc. using Indian Standard (IS 456:2000) design code and to prepare detailed drawings of the same. Also emphasis is given on analysis & design of different structural members such as roof truss, welded plate girder, etc. using Indian Standard								
Title:					Title:		Code:	1
Course	descriptio	n:			1		1	
In this I	aboratory	course emphasis is	s given on	analysis	& desig	gn of differe	ent RCC s	structural
members	s such as	beam, slab, column	, footing e	etc. using	Indian S	Standard (IS	5 456:2000)) design
code and	l to prepar	e detailed drawings	of the san	ne. Also e	emphasis	s is given or	n analysis	& design
of differe	ent structu	ral members such as	s roof truss	s, welded	plate gin	der, etc. usi	ng Indian	Standard
(IS 800:2	2007) desi	gn code and to prepa	are detaile	d drawing	gs of the	same.		
Laborat	La Sourse Structural Engineering La Sourse description: a this Laboratory course emphasis aembers such as beam, slab, column ode and to prepare detailed drawing	ry Hours/week No. of weeks Total		Total l	ours	Semeste	r credits	
		2	14		28		1	
End Sen	nester Exa	am (ESE) Pattern:		Oral (O	R)		1	

Prerequisite course(s):		
Nil		

Course objectives:

The primary lab course objective is to analyze and design a building with all the details and relevant drawings for various components of the structure. Also the course objective is to analyze and design Roof Truss and Welded Plate Girder and prepare relevant drawings and details for these structures.

Course outcomes:

Upon successful completion of lab Course, student will be able to:

- Analyze various types of load acting on the building structure and internal forces developed thereof.
- Design components of the RCC and Steel structures.
- Demonstrate use of IS 456.
- Demonstrate use of IS 800.
- Demonstrate the details and drawings of the structure.

LAB COURSE CONTENTStructural Engineering LabSemester:VITeaching Scheme:Practical:2 hours/weekEnd semester exam (ESE):25 marksInternal Continuous Assessment25 marks(ICA):25 marks

1) Structural Layout.

a) To prepare a simple line plan G+2 building (Residential).

b) To draw structural plan indicating slabs, beams, columns, column footings.

2) Analysis and design of various beams and slabs.

- a) To calculate loads and internal forces on beams and slabs.
- b) To decide the sections and calculate steel reinforcement.

c) To Prepare Detailing & drawing of beams, slab.

3) Analysis and design of column and column footing.

- a) To calculate loads and internal forces on columns and footings.
- b) To decide the sections and calculate steel reinforcement.
- c) To Prepare Detailing & drawing of column, footings.

4) Design of Steel members

- a) Design of Tension and Compression member
- b) Design of connection as per IS 800 -2007.

5) Analysis and Design of beams and built up columns

a) Designing and detailing of members for one/two storied buildings. drawing

6) A report on one site visit.

a) A report on at least one site visit shall be submitted in ICA.

b) Drawing shall be on half imperial sheets. At least one sheet of above designs shall be in A3/A4 size sheets using drafting software.

Note

a) A design report shall be prepared along with showing details on half imperial drawing sheets.

b) A few typical details of beam column etc. shall be shown on A4 / A3 size sheets using drafting software also.s

Text Books/Reference Books:

1) B. C. Punmia, Ashok Kr. Jain, Arun Kr. Jain, Limit State Design of Reinforced Concrete, Laxmi Publication, 1_{st} edition 2007

2) P. C. Varghese ,Limit State Design of Reinforced Concrete, PHI, 2nd Edition 2006

3) S. Ramamrutham, R. Narayan ,Design of Reinforced Concrete Structures (conforming to

IS 456), Dhanpat Rai Publication, 7th Edition 2013

4) Dr. V. L. Shah and Dr. S. R, Limit State Theory and Design . Karve, Pune Vidharthi Gruh Publication, Pune, 6th Edition

5) P. Dayaratnram, Limit State Analysis and Design, Wheeler Publishing company, Delhi.,12th edition 2009

6) Pillai Menon ,Reinforced Concrete Design, Tata Mc Graw Hill, New Delhi., 3rd edition 2013

7) Subramanian N.,Design of Steel Structures., Oxford University Press, New Delhi, 2008

8)Shah V. L. & Gore ,Limit state design of Steel Structure, Structures Publication, Pune.

9) Duggal S. K.,Limit State Design of Steel Structures, Tata Mc Graw Hill publishing company Ltd., New Delhi, 3rd Edition, 2009

10) Bhavikatti S. S ,Design of Steel Structure by Limit State Method as per IS: 800- 2007., I K International Publishing House, New Delhi, 3rd Edition

Guide lines for ICA:

ICA shall be based on continuous evaluation of students performance throughout the semester and ICA drawing sheets submitted by the students.

Guidelines for ESE:

ESE will be based on drawing sheets submitted by the student. In ESE the student may be asked to answer questions based on ICA. Evaluation will be based on performance in **oral** examination.

		Enviro	nmental l	Engineer	ing Lab			
		LA	B COURS	E OUTL	INE			
Course	urseEnvironmental Engineering LabShort <i>EE L</i> Course							
Title:	::				Title:		Code:	
Course of	descriptio	on:				1		
This cou	rse trains a	a student in charact	erizing wa	ters and	wastewa	ters. The s	syllabus inclu	des
sample c	ollection	techniques, sample	preservati	on techni	iques, pł	nysical, che	emical and bi	ological
examina	tion of wa	iter, data interpreta	tion and a	pplicatior	ıs.			
Laborat	ory	Hours/week	No. of w	eeks	Total ł	nours	Semester	credits
		2	14		28		1	
End Sen	nester Exa	am (ESE) Pattern:		Practica	ul (PR) /	Oral (OR))	

Prerequisite course(s):

Course objectives:

The basic objective of this course is to enable a student for examination of waters and wastewaters at laboratory level. The student must be able to collect samples, preserve and characterize as well as interpret. Thus the student must be able to audit a water treatment plant, wastewater treatment plant and industrial effluent treatment plant.

Course outcomes:

After successful completion of this course the student will be able to:

- 6. Collect water and wastewater samples.
- 7. Preserve water and wastewater samples.
- 8. Examine water and wastewater samples for physical, chemical and biological parameters.
- 9. Interpret the results.
- **10.** Audit the treatment plants.

	LAB CO	URSE CONTENT		
Environmental E	ngineering Lab	Semester: VI		
Teaching Scheme:		Examination scheme		
Practical:	2 hours/week	End semester exam (ESE):	25 marks	
		Internal Continuous Assessment	25 marks	
		(ICA):		

List of laboratory experiments to be performed:

- 1. To determination of pH and alkalinity of water sample.
- 2. To determination of turbidity of water and determine optimum coagulant dose using jar test apparatus.

- 3. To determine chlorine content of a given water sample by titration method.
- 4. To determine hardness of water.
- 5. To determine MPN of water sample.
- 6. To determine conductivity of water sample.
- 7. To determine DO content of water sample.
- 8. To determine BOD content of wastewater sample.
- 9. To determine COD content of wastewater sample.
- 10. To determine oil/grease content of the water sample.
- 11. To determine total solids, dissolved solids and suspended solids of the water sample.
- 12. To determine SVI of sludge.

Text Books:

Laboratory Manuals designed by teachers concerned.

Reference Books:

Standard Methods for examination of waters and wastewaters, APHA Publication.

Guide lines for ICA:

- The students must perform at least ten practical out of the prescribed list.
- Students should visit at least one water treatment plant and waste water treatment plant.

Guidelines for ESE:

The ESE must focus of the laboratory work performed by the students and site visit. However students are supposed to be examined for the theoretical aspect of the laboratory work also.

	Transportation Engineering Lab								
LAB COURSE OUTLINE									
Course	Transportation Engineering Lab	Short	TREL	Course					
Title: Code:									
Course o	description:		I		I				
The cour	rse in infrastructural engineering incorporate	es experii	nental met	hods, assi	gnments				
and site	visits. The experimental methods are as it is	given by	the Indian	standard	code for				
practice.	. It includes assignments based upon the dat	ta analys	is and desi	gn, in ord	ler to fill				
the gap l	between theory and practice through real wo	rld expos	ure. It prop	ooses a sit	e visit to				
a major	road project and also to a hot mix plant. Su	ch site v	isits will er	hable the	students				
with the	real engineering constraints faced by a civil e	engineeri	ng at site.						

Laboratory	Hours/week	No. of w	eeks	Total hours	Semes	ter credits		
	2	14		28	1			
End Semester Exa	am (ESE) Pattern:	1	Oral (O	(R)	1			
Prerequisite cours	se(s):		1					
Nil								
Course objectives	•							
The basic objective	The basic objective of this syllabus is to appraise the students with experimental methods							
as applicable for	various civil engi	neering 1	materials	used for road	l constructi	on. It also		
includes the intro	oduction to the IS	practice	s applica	ble at every s	tage of the	Lab work		
including samplin	ng, testing in the la	boratory	and data	interpretation	n. Over and	above, the		
syllabus also aims to introduce the students with the real world situation through site visit.								
The experimental data can be used for design and this aspect is covered by assignments on								
certain topic of th	e syllabus.							
Course outcomes:	:							
1. Student wi	ill be aware of the	IS codes	prevailin	g in the testing	g of road co	nstruction		
materials								
2. Apply kn	owledge to the	testing	of com	non road co	onstruction	materials		
experimen	tally.							
3. Apply know	wledge to Student	will be ab	le to desig	gn flexible and	rigid paven	nent.		
4. Demonstra	ate ability handle si	ite constra	aints.					
5. Demonstra	ate ability to work i	in the wo	rking env	ironment.				
	LAI	B COURS	E CONT	ENT				
Transportation E	Engineering Lab		Semeste	r:	VI			
Teaching Scheme	:		Examina	ation scheme				
Practical:	2 hours/week	K	End sem	nester exam (E	SE):			
	•		Internal	Continuous A	ssessment	25 marks		
			(ICA):					

Lab Course Content

1) Assignment on unit no 1

2) Assignment on unit no 2

3) Assignment on unit no 3

4) Assignment on unit no 4

5) Assignment on unit no 5

6)Numerical based on Flexible Pavement Design

7)Numerical based on Rigid Pavement Design

A report on at least one site visit.

Visit to construction site of major road projects, highways / expressways & preparation of report hot mix plant etc.

Text Books/Reference Books:

1. Khanna, S.K., Justo, C.E.G and Veeraragavan, A, 'Highway Engineering', Revised 10th

Edition, Nem Chand & Bros, 2017

- 2. Kadiyalai, L.R., 'Traffic Engineering and Transport Planning', Khanna Publishers.
- 3. Partha Chakraborty, ' Principles Of Transportation Engineering, PHI Learning,
- 4. L. R. Kadiyali, N B. Lal, Principles & practice of Highway Engineering, Khanna Publication, 2005.
- 5. Rangwala, Highway Engineering, Charotar

Guide lines for ICA:

ICA shall be based on continuous evaluation of students' performance throughout the

semester and term work, sketches, visit report submitted by the students.

Guidelines for ESE:

_

Internship

Internship is a mandatory and non-credit course. It is mandatory for all admitted students to undergo Internship during the degree course. The course shall be of THREE weeks duration during summer vacation after Semester - VI. Following are the intended objectives of internship training:

- Will expose to the real world environment and creating professional competency in the students to make them fit for the industry.
- Provide opportunities to learn, understand and sharpen the technical and managerial skills required at the job.

- Exposure to the current technological developments relevant to the subject area of training.
- To bridge up the gap between theory and practice.

Students shall choose to undergo Training/Innovation/Entrepreneurship related activities for Internship. Students shall choose either to work on innovation or entrepreneurial activities resulting in start-up or undergo internship with industry/NGO's/Government organizations/Micro/Small/Medium enterprises/academic institutions/research institutions. In case student want to pursue their family business and don't want to undergo internship, a declaration by a parent may be submitted to the Department Head.

The internship activities and list of sub-activities for Internship are as under.

- Innovation / Entrepreneurship:
 - Participation in innovation related Competitions for eg. Hackathons, Robocon, Baha, IIT TechFest, Chemcon, Dipex etc.
 - o Development of new product/Business Plan/registration of start-up
 - Participation in Entrepreneurship Program of THREE weeks duration
 - Online certification courses by SWAYAM, NPTEL, QEEE etc.
 - Working for consultancy/ research project within the institutes
 - Training on Software (As per the need of respective branch);
 - Field Survey / Case Study
 - Work experience at family business
- Training based Internship:
 - Internship with Industry/Govt./NGO/PSU/Any Micro/ Small/Medium enterprise/academic institutions/research institutions
 - Online Internship
- Rural Internship
 - Any Long Term Goals may be carried out by students in teams:
 - Prepare and implement plan to create local job opportunities.
 - Prepare and implement plan to improve education quality in village.
 Syllabus for Third Year Civil Engineering w.e.f. 2020 21

- Prepare an actionable DPR for doubling the village Income.
- Developing Sustainable Water Management system.
- Prepare and Improve a plan to improve health parameters of villagers.
- Developing and implementing of Low Cost Sanitation facilities.
- Prepare and implement plan to promote Local Tourism through Innovative Approaches.
- Implement/Develop Technology solutions which will improve quality of life.
- Prepare and implement solution for energy conservation.
- Prepare and implement plan to Skill village youth and provide employment.
- Develop localized techniques for Reduction in construction Cost.
- Prepare and implement plan of sustainable growth of village.
- Setting of Information imparting club for women leading to contribution in social and economic issues.
- Developing and managing efficient garbage disposable system.
- Contribution to any national level initiative of Government of India. For eg. Digital India/ Skill India/ Swachh Bharat Internship etc.

Every Faculty Mentor/Supervisors have to play active roles during the internship. Maximum 20 students are to be supervised by each faculty mentor. Mentor shall be responsible for selection of Internship activities by the student under his/her supervision and shall avoid repetition of activities by the student. The college/Institute shall facilitate internship for the students.

Every student is required to prepare a file for Internship containing documentary proofs (daily training diary, comprehensive report and completion certificate) of the activities done by him/her. The students should record in the daily training diary the day to day account of the observations, impressions, informatid on gathered and suggestions given, if any. It should contain the sketches & drawings related to the observations made by the students. The daily training diary should include Date, Time of Arrival, Time of Departure, Main points of the day.

The daily training diary should be signed by the supervisor/in charge of the section where the student has been working.

After completion of Internship, the student should prepare a comprehensive report to indicate what s/he has observed and learnt in the training period. The report should include Internship Objectives (in measurable terms), Internship Activities, and Internship Outcome.

The completion certificate should be signed by the supervisor/ in charge of the section where the student has been working with performance remark as Satisfactory / Good / Excellent.

The evaluation of Internship shall be in Semester – VII. The evaluation shall be done by expert committee constituted by the concerned department including Department Head/ TPO/ faculty mentor or guide. It should be evaluated on the basis of the following criteria:

- Regularity in maintenance of the diary.
- Adequacy & quality of information recorded.
- Originality.
- Adequacy and purposeful write-up.
- Practical applications, relationships with basic theory and concepts taught in the course.
- Skill / knowledge acquired

Hence the satisfactory completion of Internship shall be submitted to the university at the end of Semester - VIII of FOUR year Bachelor of Engineering course. Only after successfully completion of Internship, Internship should be printed in the final year mark sheet as COMPLETED.

	Minor P	roject			
	LAB COURSE	OUTLINE			
Course Title:	Minor Project	Short Title:	MPROJ	Course Code:	
Course description	ı:				
Minor project repre	esent the culmination of study	towards the Ba	achelor of E	ngineering deg	ree.

The minor project offers the opportunity to apply and extend material learned throughout the program. The emphasis is necessarily on facilitating student learning in technical, project management and presentation spheres.

Laboratory	Hours/week	No. of weeks		Total hours	Semester credits
	6	14		84	3
End Semester Exam (ESE) Pattern:		Ora	al (OR)	

Prerequisite course(s):

Course objectives:

- 5. To understand the basic concepts & broad principles of projects.
- 6. To understand the value of achieving perfection in project implementation & completion.
- 7. To apply the theoretical concepts to solve problems with teamwork and multidisciplinary approach.
- 8. To demonstrate professionalism with ethics; present effective communication skills and relate engineering issues to broader societal context.

Course outcomes:

Upon successful completion of lab Course, student will be able to:

- 6. Demonstrate a sound technical knowledge of their selected project topic.
- 7. Undertake problem identification, formulation and solution.
- 8. Design engineering solutions to complex problems utilizing a systems approach.
- 9. Conduct an engineering project
- 10. Demonstrate the knowledge, skills and attitudes of a professional engineer.

	LAB COURS	E CONTENT	
Minor Project		Semester: V	[
Teaching Scheme:		Examination scheme:	
Practical:	6 hours/week	End semester exam (ESE): (OR)	25
			marks

Internal Continuous Assessment	50
(ICA):	marks

In continuation with Minor Project (Stage – I) at Semester – V, by the end of Semester – VI, the student should complete implementation of ideas as formulated in Minor Project (Stage – I). It may involve fabrication / coding, experimentation, data analysis within realistic constraints such as economic, environmental, social, ethical, health and safety, manufacturability, and sustainability. It may also include testing, results and report writing. Each student group should submit complete project report at the end of Semester-VI in the form of Hard bound. Assessment for the project shall also include presentation by the students.

Each student group is required to maintain separate log book for documenting various activities of the project.

Guide lines for ICA:

The Internal Continuous Assessment (ICA) for project shall be based on continuous evaluation of students' performance, active participation, knowledge / skill acquired throughout semester and presentation by the students. The assessment shall be done jointly by the guide and departmental committee. A three-member departmental committee including guide, appointed by Head of the department, shall be constituted for the assessment. The assessment for Minor Project in Semester – VI shall be as per the guidelines given in Table – B.

				1a	ble - B				
		As	ssessment by (Guide		Assessm	artmental		
						Committee			
Sr	Nam	Attendan	Attendan Implement Resu Rep			Depth of	Presenta	Demonstra	Tot
	e of	ce /	ation	lts	ort	Understan	tion	tion	al
Ν	the	Participa				ding			
0.	Stud	tion							

Table – B

	ent								
	Marks	5	5	5	5	10	10	10	50
Guid	lelines fo	or ESE:							
In E	nd Seme	ster Examin	ation (ESE),	the stud	lent ma	y be asked fo	or presentati	on / demon	stration
and questions on Project. Evaluation will be based on answers given by students in oral									
examination.									